ﻻ يوجد ملخص باللغة العربية
A quasiclassical theory of giant magnetoresistance in nanoscale point contacts between different ferromagnetic metals is developed. The contacts were sorted by three types of mutual positions of the conduction spin-subband bottoms which are shifted one against another by the exchange interaction. A model of linear domain wall has been used to account for the finite contact length. The magnetoresistance is plotted against the size of the nanocontact. In heterocontacts the magnetoresistance effect turned out to be not only negative, as usual, but can be positive as well. Relevance of the results to existing experiments on GMR in point heterocontacts is discussed.
This contribution reports on comparative studies on giant magnetoresistance (GMR) in carbon nanotubes (CNTs) and graphene nanoribbons of similar aspect ratios (i.e perimeter/length and width/length ratios, for the former and the latter, respectively)
Magnetic damping is a key metric for emerging technologies based on magnetic nanoparticles, such as spin torque memory and high-resolution biomagnetic imaging. Despite its importance, understanding of magnetic dissipation in nanoscale ferromagnets re
The unidirectional magnetoresistance (UMR) is one of the most complex spin-dependent transport phenomena in ferromagnet/non-magnet bilayers, which involves spin injection and accumulation due to the spin Hall effect (SHE) or Rashba-Edelstein effect (
We investigate the anisotropic magnetoresistance (AMR) of ferromagnetic CoNi microhelices fabricated by electrodeposition and laser printing. We find that the geometry of the three-dimensional winding determines a characteristic angular and field-dep
Carbon-based nanostructures and graphene, in particular, evoke a lot of interest as new promising materials for nanoelectronics and spintronics. One of the most important issue in this context is the impact of external electrodes on electronic proper