ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating Social Media into a Pan-European Flood Awareness System: A Multilingual Approach

60   0   0.0 ( 0 )
 نشر من قبل Valerio Lorini
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes a prototype system that integrates social media analysis into the European Flood Awareness System (EFAS). This integration allows the collection of social media data to be automatically triggered by flood risk warnings determined by a hydro-meteorological model. Then, we adopt a multi-lingual approach to find flood-related messages by employing two state-of-the-art methodologies: language-agnostic word embeddings and language-aligned word embeddings. Both approaches can be used to bootstrap a classifier of social media messages for a new language with little or no labeled data. Finally, we describe a method for selecting relevant and representative messages and displaying them back in the interface of EFAS.



قيم البحث

اقرأ أيضاً

Since the uptake of social media, researchers have mined online discussions to track the outbreak and evolution of specific diseases or chronic conditions such as influenza or depression. To broaden the set of diseases under study, we developed a Dee p Learning tool for Natural Language Processing that extracts mentions of virtually any medical condition or disease from unstructured social media text. With that tool at hand, we processed Reddit and Twitter posts, analyzed the clusters of the two resulting co-occurrence networks of conditions, and discovered that they correspond to well-defined categories of medical conditions. This resulted in the creation of the first comprehensive taxonomy of medical conditions automatically derived from online discussions. We validated the structure of our taxonomy against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding matches of our clusters with 20 official categories, out of 22. Based on the mentions of our taxonomys sub-categories on Reddit posts geo-referenced in the U.S., we were then able to compute disease-specific health scores. As opposed to counts of disease mentions or counts with no knowledge of our taxonomys structure, we found that our disease-specific health scores are causally linked with the officially reported prevalence of 18 conditions.
In the area of customer support, understanding customers intents is a crucial step. Machine learning plays a vital role in this type of intent classification. In reality, it is typical to collect confirmation from customer support representatives (CS Rs) regarding the intent prediction, though it can unnecessarily incur prohibitive cost to ask CSRs to assign existing or new intents to the mis-classified cases. Apart from the confirmed cases with and without intent labels, there can be a number of cases with no human curation. This data composition (Positives + Unlabeled + multiclass Negatives) creates unique challenges for model development. In response to that, we propose a semi-supervised multi-task learning paradigm. In this manuscript, we share our experience in building text-based intent classification models for a customer support service on an E-commerce website. We improve the performance significantly by evolving the model from multiclass classification to semi-supervised multi-task learning by leveraging the negative cases, domain- and task-adaptively pretrained ALBERT on customer contact texts, and a number of un-curated data with no labels. In the evaluation, the final model boosts the average AUC ROC by almost 20 points compared to the baseline finetuned multiclass classification ALBERT model.
Recommender systems are being employed across an increasingly diverse set of domains that can potentially make a significant social and individual impact. For this reason, considering fairness is a critical step in the design and evaluation of such s ystems. In this paper, we introduce HyperFair, a general framework for enforcing soft fairness constraints in a hybrid recommender system. HyperFair models integrate variations of fairness metrics as a regularization of a joint inference objective function. We implement our approach using probabilistic soft logic and show that it is particularly well-suited for this task as it is expressive and structural constraints can be added to the system in a concise and interpretable manner. We propose two ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template; second as a fair retrofitting technique that can be used to improve the fairness of predictions from a black-box model. We empirically validate our approach by implementing multiple HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender. We also run experiments showing the effectiveness of our methods for the task of retrofitting a black-box model and the trade-off between the amount of fairness enforced and the prediction performance.
This paper considers the task of matching images and sentences by learning a visual-textual embedding space for cross-modal retrieval. Finding such a space is a challenging task since the features and representations of text and image are not compara ble. In this work, we introduce an end-to-end deep multimodal convolutional-recurrent network for learning both vision and language representations simultaneously to infer image-text similarity. The model learns which pairs are a match (positive) and which ones are a mismatch (negative) using a hinge-based triplet ranking. To learn about the joint representations, we leverage our newly extracted collection of tweets from Twitter. The main characteristic of our dataset is that the images and tweets are not standardized the same as the benchmarks. Furthermore, there can be a higher semantic correlation between the pictures and tweets contrary to benchmarks in which the descriptions are well-organized. Experimental results on MS-COCO benchmark dataset show that our model outperforms certain methods presented previously and has competitive performance compared to the state-of-the-art. The code and dataset have been made available publicly.
Social media data has been increasingly used to facilitate situational awareness during events and emergencies such as natural disasters. While researchers have investigated several methods to summarize, visualize or mine the data for analysis, first responders have not been able to fully leverage research advancements largely due to the gap between academic research and deployed, functional systems. In this paper, we explore the opportunities and barriers for the effective use of social media data from first responders perspective. We present the summary of several detailed interviews with first responders on their use of social media for situational awareness. We further assess the impact of SMART-a social media visual analytics system-on first responder operations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا