ﻻ يوجد ملخص باللغة العربية
In the area of customer support, understanding customers intents is a crucial step. Machine learning plays a vital role in this type of intent classification. In reality, it is typical to collect confirmation from customer support representatives (CSRs) regarding the intent prediction, though it can unnecessarily incur prohibitive cost to ask CSRs to assign existing or new intents to the mis-classified cases. Apart from the confirmed cases with and without intent labels, there can be a number of cases with no human curation. This data composition (Positives + Unlabeled + multiclass Negatives) creates unique challenges for model development. In response to that, we propose a semi-supervised multi-task learning paradigm. In this manuscript, we share our experience in building text-based intent classification models for a customer support service on an E-commerce website. We improve the performance significantly by evolving the model from multiclass classification to semi-supervised multi-task learning by leveraging the negative cases, domain- and task-adaptively pretrained ALBERT on customer contact texts, and a number of un-curated data with no labels. In the evaluation, the final model boosts the average AUC ROC by almost 20 points compared to the baseline finetuned multiclass classification ALBERT model.
Multi-task learning (MTL) allows deep neural networks to learn from related tasks by sharing parameters with other networks. In practice, however, MTL involves searching an enormous space of possible parameter sharing architectures to find (a) the la
We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that un
Knowledge graph (KG) plays an increasingly important role in recommender systems. A recent technical trend is to develop end-to-end models founded on graph neural networks (GNNs). However, existing GNN-based models are coarse-grained in relational mo
Automated classification of metadata of research data by their discipline(s) of research can be used in scientometric research, by repository service providers, and in the context of research data aggregation services. Openly available metadata of th
The task of natural language table retrieval (NLTR) seeks to retrieve semantically relevant tables based on natural language queries. Existing learning systems for this task often treat tables as plain text based on the assumption that tables are str