ﻻ يوجد ملخص باللغة العربية
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice- QCD calculations is relevant to current and upcoming neutrino experiments, becoming increasingly important on the timescale of LBNF/DUNE and HyperK.
The scalar meson $D_{s0}^*(2317)$ is found 37(17)MeV below DK threshold in a lattice simulation of the $J^P=0^+$ channel using, for the first time, both DK as well as $bar sc$ interpolating fields. The simulation is done on $N_f=2+1$ gauge configurat
We illustrate the connection between electron and neutrino scattering off nuclei and show how the former process can be used to constrain the description of the latter. After reviewing some of the nuclear models commonly used to study lepton-nucleus
We review highlights of recent results on the hadron spectrum and flavor physics from lattice QCD. We also discuss recent rapid progress on the muon anomalous magnetic moment.
In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the $q^2$ dependence of the form factor in semileptonic $Dto Kl u$ decay, the decay constant of the $D$ meson, and the mass of the $B_c$ mes
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the intera