We review highlights of recent results on the hadron spectrum and flavor physics from lattice QCD. We also discuss recent rapid progress on the muon anomalous magnetic moment.
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in quark and lepton flavor physics. New data generated at Belle II, LHCb, BES III, NA62, KOTO, and Fermilab E989, combined wi
th precise calculations of the relevant hadronic physics, may reveal what lies beyond the Standard Model. We outline a path toward improvements of the precision of existing lattice-QCD calculations and discuss groundbreaking new methods that allow lattice QCD to access new observables.
In this report, the most recent and precise estimates of masses of ground state baryons using lattice QCD are discussed. Considering the prospects in the heavy baryon sector, lattice estimates for these are emphasized. The first and only existing lat
tice determination of the highly excited $Omega_c$ excitations in relation to the recent LHCb discovery is also discussed.
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision o
f such calculations, and therefore our ability to leverage experiment, is typically limited by hadronic uncertainties. The only first-principles method for calculating the nonperturbative, hadronic contributions is lattice QCD. Modern lattice calculations have controlled errors, are systematically improvable, and in some cases, are pushing the sub-percent level of precision. I outline the role played by, highlight state of the art efforts in, and discuss possible future directions of lattice calculations in flavor physics.
We present a lattice-QCD calculation of the $Btopiell u$ semileptonic form factors and a new determination of the CKM matrix element $|V_{ub}|$. We use the MILC asqtad 2+1-flavor lattice configurations at four lattice spacings and light-quark masses
down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent $z$ parameterization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolation to the $z$ expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain $|V_{ub}|$, we simultaneously fit the experimental data for the $Btopiell u$ differential decay rate obtained by the BaBar and Belle collaborations together with our lattice form-factor results. We find $|V_{ub}|=(3.72pm 0.16)times 10^{-3}$ where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on $|V_{ub}|$ to the same level as the experimental error. We also provide results for the $Btopiell u$ vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely-determined than from our lattice-QCD calculation alone. These results can be used in other phenomenological applications and to test other approaches to QCD.
Using HISQ $N_f=2+1+1$ MILC ensembles with five different values of the lattice spacing, including four ensembles with physical quark masses, we have performed the most precise computation to date of the $Ktopiell u$ vector form factor at zero moment
um transfer, $f_+^{K^0pi^-}(0)=0.9696(15)_text{stat}(12)_text{syst}$. This is the first calculation that includes the dominant finite-volume effects, as calculated in chiral perturbation theory at next-to-leading order. Our result for the form factor provides a direct determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|=0.22333(44)_{f_+(0)}(42)_text{exp}$, with a theory error that is, for the first time, at the same level as the experimental error. The uncertainty of the semileptonic determination is now similar to that from leptonic decays and the ratio $f_{K^+}/f_{pi^+}$, which uses $|V_{ud}|$ as input. Our value of $|V_{us}|$ is in tension at the 2--$2.6sigma$ level both with the determinations from leptonic decays and with the unitarity of the CKM matrix. In the test of CKM unitarity in the first row, the current limiting factor is the error in $|V_{ud}|$, although a recent determination of the nucleus-independent radiative corrections to superallowed nuclear $beta$ decays could reduce the $|V_{ud}|^2$ uncertainty nearly to that of $|V_{us}|^2$. Alternative unitarity tests using only kaon decays, for which improvements in the theory and experimental inputs are likely in the next few years, reveal similar tensions. As part of our analysis, we calculated the correction to $f_+^{Kpi}(0)$ due to nonequilibrated topological charge at leading order in chiral perturbation theory, for both the full-QCD and the partially-quenched cases. We also obtain the combination of low-energy constants in the chiral effective Lagrangian $[C_{12}^r+C_{34}^r-(L_5^r)^2](M_rho)=(2.92pm0.31)cdot10^{-6}$.