ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-degenerate Bound State Solitons in Multi-component Bose-Einstein Condensates

157   0   0.0 ( 0 )
 نشر من قبل Li-Chen Zhao Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate non-degenerate bound state solitons systematically in multi-component Bose-Einstein condensates, through developing Darboux transformation method to derive exact soliton solutions analytically. In particular, we show that bright solitons with nodes correspond to the excited bound eigen-states in the self-induced effective quantum wells, in sharp contrast to the bright soliton and dark soliton reported before (which usually correspond to ground state and free eigen-state respectively). We further demonstrate that the bound state solitons with nodes are induced by incoherent interactions between solitons in different components. Moreover, we reveal that the interactions between these bound state solitons are usually inelastic, caused by the incoherent interactions between solitons in different components and the coherent interactions between solitons in same component. The bound state solitons can be used to discuss many different physical problems, such as beating dynamics, spin-orbital coupling effects, quantum fluctuations, and even quantum entanglement states.



قيم البحث

اقرأ أيضاً

In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component atomic Bose-Einstein condensates (BECs). The stationary states stem from the associated linear limits (as the eigenfunctions of the quantum harmonic oscillator problem) and are parametrically continued to the nonlinear regimes by varying the respective chemical potentials, i.e., from the low-density linear limits to the high-density Thomas-Fermi regimes. We perform a Bogolyubov-de Gennes (BdG) spectral stability analysis to identify stable parametric regimes of these states. Upon SO(2)-rotation, the stable steady-states, one-, two-, three-, four-, and many dark-dark soliton breathing patterns are observed in the numerical simulations. Furthermore, analytic solutions up to three dark-bright solitons in the homogeneous setting, and three-component systems are also investigated.
We report on the static and dynamical properties of multiple dark-antidark solitons (DADs) in two-component, repulsively interacting Bose-Einstein condensates. Motivated by experimental observations involving multiple DADs, we present a theoretical s tudy which showcases that bound states consisting of dark (antidark) solitons in the first (second) component of the mixture exist for different values of interspecies interactions. It is found that ensembles of few DADs may exist as stable configurations, while for larger DAD arrays, the relevant windows of stability with respect to the interspecies interaction strength become progressively narrower. Moreover, the dynamical formation of states consisting of alternating DADs in the two components of the mixture is monitored. A complex dynamical evolution of these states is observed, leading either to sorted DADs or to beating dark-dark solitons depending on the strength of the interspecies coupling. This study demonstrates clear avenues for future investigations of DAD configurations.
301 - D. Yan , J.J. Chang , C. Hamner 2011
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween two-dark-bright solitons in a homogeneous condensate and, then, extend ou r considerations to the presence of the trap. An effective equation of motion is derived for the dark-bright soliton center and the existence and stability of stationary two-dark-bright soliton states is illustrated (with the bright components being either in- or out-of-phase). The equation of motion provides the characteristic oscillation frequencies of the solitons, in good agreement with the eigenfrequencies of the anomalous modes of the system.
In this work we present a systematic study of the three-dimensional extension of the ring dark soliton examining its existence, stability, and dynamics in isotropic harmonically trapped Bose-Einstein condensates. Detuning the chemical potential from the linear limit, the ring dark soliton becomes unstable immediately, but can be fully stabilized by an external cylindrical potential. The ring has a large number of unstable modes which are analyzed through spectral stability analysis. Furthermore, a few typical destabilization dynamical scenarios are revealed with a number of interesting vortical structures emerging such as the two or four coaxial parallel vortex rings. In the process of considering the stability of the structure, we also develop a modified version of the degenerate perturbation theory method for characterizing the spectra of the coherent structure. This semi-analytical method can be reliably applied to any soliton with a linear limit to explore its spectral properties near this limit. The good agreement of the resulting spectrum is illustrated via a comparison with the full numerical Bogolyubov-de Gennes spectrum. The application of the method to the two-component ring dark-bright soliton is also discussed.
We characterize the soliton solutions and their interactions for a system of coupled evolution equations of nonlinear Schrodinger (NLS) type that models the dynamics in one-dimensional repulsive Bose-Einstein condensates with spin one, taking advanta ge of the representation of such model as a special reduction of a 2 x 2 matrix NLS system. Specifically, we study in detail the case in which solutions tend to a non-zero background at space infinities. First we derive a compact representation for the multi-soliton solutions in the system using the Inverse Scattering Transform (IST). We introduce the notion of canonical form of a solution, corresponding to the case when the background is proportional to the identity. We show that solutions for which the asymptotic behavior at infinity is not proportional to the identity, referred to as being in non-canonical form, can be reduced to canonical form by unitary transformations that preserve the symmetric nature of the solution (physically corresponding to complex rotations of the quantization axes). Then we give a complete characterization of the two families of one-soliton solutions arising in this problem, corresponding to ferromagnetic and to polar states of the system, and we discuss how the physical parameters of the solitons for each family are related to the spectral data in the IST. We also show that any ferromagnetic one-soliton solution in canonical form can be reduced to a single dark soliton of the scalar NLS equation, and any polar one-soliton solution in canonical form is unitarily equivalent to a pair of oppositely polarized displaced scalar dark solitons up to a rotation of the quantization axes. Finally, we discuss two-soliton interactions and we present a complete classification of the possible scenarios that can arise depending on whether either soliton is of ferromagnetic or polar type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا