ﻻ يوجد ملخص باللغة العربية
We report on the static and dynamical properties of multiple dark-antidark solitons (DADs) in two-component, repulsively interacting Bose-Einstein condensates. Motivated by experimental observations involving multiple DADs, we present a theoretical study which showcases that bound states consisting of dark (antidark) solitons in the first (second) component of the mixture exist for different values of interspecies interactions. It is found that ensembles of few DADs may exist as stable configurations, while for larger DAD arrays, the relevant windows of stability with respect to the interspecies interaction strength become progressively narrower. Moreover, the dynamical formation of states consisting of alternating DADs in the two components of the mixture is monitored. A complex dynamical evolution of these states is observed, leading either to sorted DADs or to beating dark-dark solitons depending on the strength of the interspecies coupling. This study demonstrates clear avenues for future investigations of DAD configurations.
We present experimental results and a systematic theoretical analysis of dark-br ight soliton interactions and multiple-dark-bright soliton complexes in atomic t wo-component Bose-Einstein condensates. We study analytically the interactions b etween
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferomet
The beyond mean-field dynamics of a bent dark soliton embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single bent dark soliton comparing the mean-field dynamics to a correlated appr
We consider a one-dimensional trapped spin-1 Bose gas and numerically explore families of its solitonic solutions, namely antidark-dark-antidark (ADDAD), as well as dark-antidark-dark (DADD) solitary waves. Their existence and stability properties ar
In this work we present a systematic study of the three-dimensional extension of the ring dark soliton examining its existence, stability, and dynamics in isotropic harmonically trapped Bose-Einstein condensates. Detuning the chemical potential from