ﻻ يوجد ملخص باللغة العربية
In this work, we propose minimal realizations for generating Dirac neutrino masses in the context of a right-handed abelian gauge extension of the Standard Model. Utilizing only $U(1)_R$ symmetry, we address and analyze the possibilities of Dirac neutrino mass generation via (a) textit{tree-level seesaw} and (b) textit{radiative correction at the one-loop level}. One of the presented radiative models implements the attractive textit{scotogenic} model that links neutrino mass with Dark Matter (DM), where the stability of the DM is guaranteed from a residual discrete symmetry emerging from $U(1)_R$. Since only the right-handed fermions carry non-zero charges under the $U(1)_R$, this framework leads to sizable and distinctive Left-Right asymmetry as well as Forward-Backward asymmetry discriminating from $U(1)_{B-L}$ models and can be tested at the colliders. We analyze the current experimental bounds and present the discovery reach limits for the new heavy gauge boson $Z^{prime}$ at the LHC and ILC. Furthermore, we also study the associated charged lepton flavor violating processes, dark matter phenomenology and cosmological constraints of these models.
We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are al
We derive perturbativity constraints on beyond standard model scenarios with extra gauge groups, such as $SU(2)$ or $U(1)$, whose generators contribute to the electric charge, and show that there are both upper and lower limits on the additional gaug
In the recently proposed dark left-right gauge model of particle interactions, the left-handed fermion doublet $( u,e)_L$ is connected to its right-handed counterpart $(n,e)_R$ through a scalar bidoublet, but $ u_L$ couples to $n_R$ only through $phi
The recent diphoton excess signal at an invariant mass of 750 GeV can be interpreted in the framework of left-right symmetric models with additional scalar singlets and vector-like fermions. We propose a minimal scenario for such a purpose. Extending