ﻻ يوجد ملخص باللغة العربية
From the viewpoint of inverse problem, the optimization of drug release based on the multi-laminated drug controlled release devices has been regarded as the solution problem of the diffusion equation initial value inverse problem. In view of the ill-posedness of the corresponding inverse problem, a modified Tikhonov regularization method is proposed by constructing a new regularizing filter function based on the singular value theory of compact operator. The convergence and the optimal asymptotic order of the regularized solution are obtained. Then the classical Tikhonov regularization method and the modified Tikhonov regularization method are applied to the optimization problem of the initial drug concentration distribution. For three various desired release profiles (constant release, linear decrease release and linear increase followed by a constant release profiles), better results can be obtained by using the modified Tikhonov regularization method. The numerical results demonstrate that the modified Tikhonov regularization method not only has the optimal asymptotic order, but also is suitable for the optimization and design of multi-laminated drug controlled release devices.
With the rapid growth of data, how to extract effective information from data is one of the most fundamental problems. In this paper, based on Tikhonov regularization, we propose an effective method for reconstructing the function and its derivative
A main drawback of classical Tikhonov regularization is that often the parameters required to apply theoretical results, e.g., the smoothness of the sought-after solution and the noise level, are unknown in practice. In this paper we investigate in n
This paper is concerned with the introduction of Tikhonov regularization into least squares approximation scheme on $[-1,1]$ by orthonormal polynomials, in order to handle noisy data. This scheme includes interpolation and hyperinterpolation as speci
Most of the literature on the solution of linear ill-posed operator equations, or their discretization, focuses only on the infinite-dimensional setting or only on the solution of the algebraic linear system of equations obtained by discretization. T
We propose regularization strategies for learning discriminative models that are robust to in-class variations of the input data. We use the Wasserstein-2 geometry to capture semantically meaningful neighborhoods in the space of images, and define a