ﻻ يوجد ملخص باللغة العربية
With the rapid growth of data, how to extract effective information from data is one of the most fundamental problems. In this paper, based on Tikhonov regularization, we propose an effective method for reconstructing the function and its derivative from scattered data with random noise. Since the noise level is not assumed small, we will use the amount of data for reducing the random error, and use a relatively small number of knots for interpolation. An indicator function for our algorithm is constructed. It indicates where the numerical results are good or may not be good. The corresponding error estimates are obtained. We show how to choose the number of interpolation knots in the reconstruction process for balancing the random errors and interpolation errors. Numerical examples show the effectiveness and rapidity of our method. It should be remarked that the algorithm in this paper can be used for on-line data.
A main drawback of classical Tikhonov regularization is that often the parameters required to apply theoretical results, e.g., the smoothness of the sought-after solution and the noise level, are unknown in practice. In this paper we investigate in n
This paper is concerned with the introduction of Tikhonov regularization into least squares approximation scheme on $[-1,1]$ by orthonormal polynomials, in order to handle noisy data. This scheme includes interpolation and hyperinterpolation as speci
Data sites selected from modeling high-dimensional problems often appear scattered in non-paternalistic ways. Except for sporadic-clustering at some spots, they become relatively far apart as the dimension of the ambient space grows. These features d
In this paper, we consider the minimization of a Tikhonov functional with an $ell_1$ penalty for solving linear inverse problems with sparsity constraints. One of the many approaches used to solve this problem uses the Nemskii operator to transform t
Most of the literature on the solution of linear ill-posed operator equations, or their discretization, focuses only on the infinite-dimensional setting or only on the solution of the algebraic linear system of equations obtained by discretization. T