ﻻ يوجد ملخص باللغة العربية
In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single vector space representation. In this work, we propose a DSM that learns multiple distributional representations of a word based on different topics. First, a separate DSM is trained for each topic and then each of the topic-based DSMs is aligned to a common vector space. Our unsupervised mapping approach is motivated by the hypothesis that words preserving their relative distances in different topic semantic sub-spaces constitute robust textit{semantic anchors} that define the mappings between them. Aligned cross-topic representations achieve state-of-the-art results for the task of contextual word similarity. Furthermore, evaluation on NLP downstream tasks shows that multiple topic-based embeddings outperform single-prototype models.
The extraction of phenotype information which is naturally contained in electronic health records (EHRs) has been found to be useful in various clinical informatics applications such as disease diagnosis. However, due to imprecise descriptions, lack
Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously reso
With the development of several multilingual datasets used for semantic parsing, recent research efforts have looked into the problem of learning semantic parsers in a multilingual setup. However, how to improve the performance of a monolingual seman
We address two challenges in topic models: (1) Context information around words helps in determining their actual meaning, e.g., networks used in the contexts artificial neural networks vs. biological neuron networks. Generative topic models infer to
One daunting problem for semantic parsing is the scarcity of annotation. Aiming to reduce nontrivial human labor, we propose a two-stage semantic parsing framework, where the first stage utilizes an unsupervised paraphrase model to convert an unlabel