ﻻ يوجد ملخص باللغة العربية
We address two challenges in topic models: (1) Context information around words helps in determining their actual meaning, e.g., networks used in the contexts artificial neural networks vs. biological neuron networks. Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. The proposed model is named as iDocNADE. (2) Due to the small number of word occurrences (i.e., lack of context) in short text and data sparsity in a corpus of few documents, the application of topic models is challenging on such texts. Therefore, we propose a simple and efficient way of incorporating external knowledge into neural autoregressive topic models: we use embeddings as a distributional prior. The proposed variants are named as DocNADEe and iDocNADEe. We present novel neural autoregressive topic model variants that consistently outperform state-of-the-art generative topic models in terms of generalization, interpretability (topic coherence) and applicability (retrieval and classification) over 7 long-text and 8 short-text datasets from diverse domains.
We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summariz
This paper describes the USTC_NELSLIP systems submitted to the Trilingual Entity Detection and Linking (EDL) track in 2016 TAC Knowledge Base Population (KBP) contests. We have built two systems for entity discovery and mention detection (MD): one us
In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single vector space representation. In this work, we propose a DSM that learns multiple distributional representations of a word based
This work focuses on combining nonparametric topic models with Auto-Encoding Variational Bayes (AEVB). Specifically, we first propose iTM-VAE, where the topics are treated as trainable parameters and the document-specific topic proportions are obtain
This paper studies the topic modeling problem of tagged documents and images. Higher-order relations among tagged documents and images are major and ubiquitous characteristics, and play positive roles in extracting reliable and interpretable topics.