ﻻ يوجد ملخص باللغة العربية
We present an experimental scheme which combines the well established method of velocity-mapimaging, with a cold trapped metastable neon target. The device is used for obtaining the branching ratios and recoil-ion energy distributions for the penning ionization process in optical collisions of ultracold metastable neon. The potential depth of the highly excited dimer potential is extracted and compared with theoretical calculations. The simplicity to construct, characterize and apply such a device, makes it a unique tool for the low-energy nuclear physics community, enabling opportunities for precision measurements in beta- and beta-delayed-neutron decays of cold, trapped, short-lived radioactive isotopes.
We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of $^6$Li atoms and $^{40}$Ca$^+$ ions in the collision energy range from 0.2 mK to 1 K. Deliberately excited ion micr
We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin
We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and effi
We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several is
We report on the observation of cold collisions between $^6$Li atoms and Yb$^+$ ions. This combination of species has recently been proposed as the most suitable for reaching the quantum limit in hybrid atom-ion systems, due to its large mass ratio.