ﻻ يوجد ملخص باللغة العربية
The formation scenario of brown dwarfs is still unclear because observational studies to investigate its initial condition are quite limited. Our systematic survey of nearby low-mass star-forming regions using the Atacama Compact Array (aka Morita array) and the IRAM 30 m telescope in 1.2 mm continuum has identified a centrally concentrated starless condensation with a central H$_2$ volume density of $sim$10$^6$ cm$^{-3}$, MC5-N, connected to a narrow (width $sim$0.03 pc) filamentary cloud in the Taurus L1495 region. The mass of the core is $sim$0.2-0.4 $M_{odot}$, which is an order of magnitude smaller than typical low-mass prestellar cores. Taking into account a typical core to star formation efficiency for prestellar cores ($sim$20%-40%) in nearby molecular clouds, brown dwarf(s) or very low-mass star(s) may be going to be formed in this core. We have found possible substructures at the high-density portion of the core, although much higher angular resolution observation is needed to clearly confirm them. The subsequent N$_2$H$^+$ and N$_2$D$^+$ observations using the Nobeyama 45 m telescope have confirmed the high-deuterium fractionation ($sim$30%). These dynamically and chemically evolved features indicate that this core is on the verge of proto-brown dwarf or very low-mass star formation and is an ideal source to investigate the initial conditions of such low-mass objects via gravitational collapse and/or fragmentation of the filamentary cloud complex.
(Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the d
(Abridged) Context. Core condensation is a critical step in the star-formation process, but is still poorly characterized observationally. Aims. We have studied the 10 pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed
Observations carried out toward starless and pre-stellar cores have revealed that complex organic molecules are prevalent in these objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that co
We present a catalogue of dense cores in a $sim 4^circtimes2^circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m, and 500 $mu$
The Galactic centre hosts a crowded, dense nuclear star cluster with a half-light radius of 4 pc. Most of the stars in the Galactic centre are cool late-type stars, but there are also >100 hot early-type stars in the central parsec of the Milky Way.