ترغب بنشر مسار تعليمي؟ اضغط هنا

Chains of dense cores in the Taurus L1495/B213 complex

151   0   0.0 ( 0 )
 نشر من قبل Mario Tafalla
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the dense cores in L1495/B213 are significantly clustered in linear chain-like groups about 0.5pc long. The internal motions in these chains are mostly subsonic and the velocity is continuous, indicating that turbulence dissipation in the cloud has occurred at the scale of the chains and not at the smaller scale of the individual cores. The chains also present an approximately constant abundance of N2H+ and radial intensity profiles that can be modeled with a density law that follows a softened power law. A simple analysis of the spacing between the cores using an isothermal cylinder model indicates that the cores have likely formed by gravitational fragmentation of velocity-coherent filaments. Combining our analysis of the cores with our previous study of the large-scale C18O emission from the cloud, we propose a two-step scenario of core formation in L1495/B213. In this scenario, named fray and fragment, L1495/B213 originated from the supersonic collision of two flows. The collision produced a network of intertwined subsonic filaments or fibers (fray step). Some of these fibers accumulated enough mass to become gravitationally unstable and fragment into chains of closely-spaced cores. This scenario may also apply to other regions of star formation.



قيم البحث

اقرأ أيضاً

(Abridged) Context. Core condensation is a critical step in the star-formation process, but is still poorly characterized observationally. Aims. We have studied the 10 pc-long L1495/B213 complex in Taurus to investigate how dense cores have condensed out of the lower-density cloud material. Results. From the N$_2$H$^+$ emission, we identify 19 dense cores, some starless and some protostellar. They are not distributed uniformly, but tend to cluster with relative separations on the order of 0.25 pc. From the C$^{18}$O emission, we identify multiple velocity components in the gas. We have characterized them by fitting gaussians to the spectra, and by studying the distribution of the fits in position-position-velocity space. In this space, the C$^{18}$O components appear as velocity-coherent structures, and we have identified them automatically using a dedicated algorithm (FIVe: Friends In Velocity). Using this algorithm, we have identified 35 filamentary components with typical lengths of 0.5 pc, sonic internal velocity dispersions, and mass-per-unit-length close to the stability threshold of isothermal cylinders at 10 K. Core formation seems to have occurred inside the filamentary components via fragmentation, with a small number of fertile components with larger mass-per-unit-length being responsible for most cores in the cloud. At large scales, the filamentary components appear grouped into families, which we refer to as bundles. Conclusions. Core formation in L1495/B213 has proceeded by hierarchical fragmentation. The cloud fragmented first into several pc-scale regions. Each of these regions later fragmented into velocity-coherent filaments of about 0.5 pc in length. Finally, a small number of these filaments fragmented quasi-statically and produced the individual dense cores we see today.
We present a catalogue of dense cores in a $sim 4^circtimes2^circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m, and 500 $mu$ m continuum bands. Estimates of mean dust temperature and total mass are derived using modified blackbody fits to the spectral energy distributions. We detect 525 starless cores of which $sim10$-20% are gravitationally bound and therefore presumably prestellar. Our census of unbound objects is $sim85$% complete for $M>0.015,M_odot$ in low density regions ($A_Vstackrel{<}{_sim}5$ mag), while the bound (prestellar) subset is $sim85$% complete for $M>0.1,M_odot$ overall. The prestellar core mass function (CMF) is consistent with lognormal form, resembling the stellar system initial mass function, as has been reported previously. All of the inferred prestellar cores lie on filamentary structures whose column densities exceed the expected threshold for filamentary collapse, in agreement with previous reports. Unlike the prestellar CMF, the unbound starless CMF is not lognormal, but instead is consistent with a power-law form below $0.3,M_odot$ and shows no evidence for a low-mass turnover. It resembles previously reported mass distributions for CO clumps at low masses ($Mstackrel{<}{_sim}0.3,M_odot$). The volume density PDF, however, is accurately lognormal except at high densities. It is consistent with the effects of self-gravity on magnetized supersonic turbulence. The only significant deviation from lognormality is a high-density tail which can be attributed unambiguously to prestellar cores.
We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $mu$m and 500 $mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$times$10$^{12}$ $-$ 1$times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_odot$ to 9.5 M$_odot$. The masses of NH$_3$ leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests these leaves are gravitationally unbound structures. 9 out of 39 NH$_3$ leaves are gravitationally bound and 7 out of 9 gravitationally bound NH$_3$ leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure-confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.
The formation scenario of brown dwarfs is still unclear because observational studies to investigate its initial condition are quite limited. Our systematic survey of nearby low-mass star-forming regions using the Atacama Compact Array (aka Morita ar ray) and the IRAM 30 m telescope in 1.2 mm continuum has identified a centrally concentrated starless condensation with a central H$_2$ volume density of $sim$10$^6$ cm$^{-3}$, MC5-N, connected to a narrow (width $sim$0.03 pc) filamentary cloud in the Taurus L1495 region. The mass of the core is $sim$0.2-0.4 $M_{odot}$, which is an order of magnitude smaller than typical low-mass prestellar cores. Taking into account a typical core to star formation efficiency for prestellar cores ($sim$20%-40%) in nearby molecular clouds, brown dwarf(s) or very low-mass star(s) may be going to be formed in this core. We have found possible substructures at the high-density portion of the core, although much higher angular resolution observation is needed to clearly confirm them. The subsequent N$_2$H$^+$ and N$_2$D$^+$ observations using the Nobeyama 45 m telescope have confirmed the high-deuterium fractionation ($sim$30%). These dynamically and chemically evolved features indicate that this core is on the verge of proto-brown dwarf or very low-mass star formation and is an ideal source to investigate the initial conditions of such low-mass objects via gravitational collapse and/or fragmentation of the filamentary cloud complex.
We study the kinematics of the dense gas of starless and protostellar cores traced by the N2D+(2-1), N2H+(1-0), DCO+(2-1), and H13CO+(1-0) transitions along the L1495 filament and the kinematic links between the cores and the surrounding molecular cl oud. We measure velocity dispersions, local and total velocity gradients and estimate the specific angular momenta of 13 dense cores in the four transitions using the on-the-fly observations with the IRAM 30 m antenna. To study a possible connection to the filament gas, we use the fit results of the C18O(1-0) survey performed by Hacar et al. (2013). All cores show similar properties along the 10 pc-long filament. N2D+(2-1) shows the most centrally concentrated structure, followed by N2H+(1-0) and DCO+(2-1), which show similar spatial extent, and H13CO+(1-0). The non-thermal contribution to the velocity dispersion increases from higher to lower density tracers. The change of magnitude and direction of the total velocity gradients depending on the tracer used indicates that internal motions change at different depths within the cloud. N2D+ and N2H+ show smaller gradients than the lower density tracers DCO+ and H13CO+, implying a loss of specific angular momentum at small scales. At the level of cloud-core transition, the cores external envelope traced by DCO+ and H13CO+ is spinning up, consistent with conservation of angular momentum during core contraction. C18O traces the more extended cloud material whose kinematics is not affected by the presence of dense cores. The decrease in specific angular momentum towards the centres of the cores shows the importance of local magnetic fields to the small scale dynamics of the cores. The random distributions of angles between the total velocity gradient and large scale magnetic field suggests that the magnetic fields may become important only in the high density gas within dense cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا