ﻻ يوجد ملخص باللغة العربية
End-to-end approaches open a new way for more accurate and efficient spoken language understanding (SLU) systems by alleviating the drawbacks of traditional pipeline systems. Previous works exploit textual information for an SLU model via pre-training with automatic speech recognition or fine-tuning with knowledge distillation. To utilize textual information more effectively, this work proposes a two-stage textual knowledge distillation method that matches utterance-level representations and predicted logits of two modalities during pre-training and fine-tuning, sequentially. We use vq-wav2vec BERT as a speech encoder because it captures general and rich features. Furthermore, we improve the performance, especially in a low-resource scenario, with data augmentation methods by randomly masking spans of discrete audio tokens and contextualized hidden representations. Consequently, we push the state-of-the-art on the Fluent Speech Commands, achieving 99.7% test accuracy in the full dataset setting and 99.5% in the 10% subset setting. Throughout the ablation studies, we empirically verify that all used methods are crucial to the final performance, providing the best practice for spoken language understanding. Code is available at https://github.com/clovaai/textual-kd-slu.
End-to-end architectures have been recently proposed for spoken language understanding (SLU) and semantic parsing. Based on a large amount of data, those models learn jointly acoustic and linguistic-sequential features. Such architectures give very g
End-to-end (E2E) spoken language understanding (SLU) systems predict utterance semantics directly from speech using a single model. Previous work in this area has focused on targeted tasks in fixed domains, where the output semantic structure is assu
Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain.
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SL