ﻻ يوجد ملخص باللغة العربية
We demonstrate number-resolved detection of individual strontium atoms in a long working distance low numerical aperture (NA = 0.26) tweezer. Using a camera based on single-photon counting technology, we determine the presence of an atom in the tweezer with a fidelity of 0.989(6) (and loss of 0.13(5)) within a 200 $mu$s imaging time. Adding continuous narrow-line Sisyphus cooling yields similar fidelity, at the expense of much longer imaging times (30 ms). Under these conditions we determine whether the tweezer contains zero, one or two atoms, with a fidelity $>$0.8 in all cases with the high readout speed of the camera enabling real-time monitoring of the number of trapped atoms. Lastly we show that the fidelity can be further improved by using a pulsed cooling/imaging scheme that reduces the effect of camera dark noise.
We report on a scanning microscopy technique for atom-number-resolved imaging of excited-state atoms. A tightly focused laser beam leads to local autoionization, and the resulting ions are counted electronically. Scanning the beam across the cloud bu
The multichannel Na-Cs interactions are characterized by a series of measurements using two atoms in an optical tweezer, along with a multichannel quantum defect theory (MQDT). The triplet and singlet scattering lengths are measured by performing Ram
We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule crea
We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very
We present results from two-photon photoassociative spectroscopy of the least-bound vibrational level of the X$^1Sigma_g^+$ state of the $^{88}$Sr$_2$ dimer. Measurement of the binding energy allows us to determine the s-wave scattering length, $a_{8