ﻻ يوجد ملخص باللغة العربية
We derive the system of equations that allows to include non-equilibrium correlations of filling numbers into the theory of the hopping transport. The system includes the correlations of arbitrary order in a universal way and can be cut at any place relevant to a specific problem to achieve the balance between rigor and computation possibilities. In the linear-response approximation, it can be represented as an equivalent electric circuit that generalizes the Miller-Abrahams resistor network. With our approach, we show that non-equilibrium correlations are essential to calculate conductivity and distribution of currents in certain disordered systems. Different types of disorder affect the correlations in different applied fields. The effect of energy disorder is most important at weak electric fields while the position disorder by itself leads to non-zero correlations only in strong fields.
For hopping transport in disordered materials, the mobility of charge carriers is strongly dependent on temperature and the electric field. Our numerical study shows that both the energy distribution and the mobility of charge carriers in systems wit
We discuss memory effects in the conductance of hopping insulators due to slow rearrangements of many-electron clusters leading to formation of polarons close to the electron hopping sites. An abrupt change in the gate voltage and corresponding shift
The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system h
We present a theory for tunneling spectroscopy in a break-junction semiconductor device for materials in which the electronic conduction mechanism is hopping transport. Starting from the conventional expression for the hopping current we develop an e
We study a simple non-interacting nearest neighbor tight-binding model in one dimension with disorder, where the hopping terms are chosen randomly. This model exhibits a well-known singularity at the band center both in the density of states and loca