ﻻ يوجد ملخص باللغة العربية
The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system has been considered instead. It is found, that in the limit, where the Rashba length is large compared to the typical hopping length, the spin dynamics of a disordered system can still be described by the expressions derived for an ordered system, under the provision that one takes into account the frequency dependence of the diffusion constant and the mobility (which are determined by charge transport and are independent of spin). With these results we are able to make explicit the influence of disorder on spin related quantities as, e.g., the spin life-time in hopping systems.
Spin current is a central theme in spintronics, and its generation is a keen issue. The spin-polarized current injection from the ferromagnet, spin battery, and spin Hall effect have been used to generate spin current, but Ohmic currents in the norma
We report a numerical investigation of the Anderson transition in two-dimensional systems with spin-orbit coupling. An accurate estimate of the critical exponent $ u$ for the divergence of the localization length in this universality class has to our
We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechani
Non-interacting spinless electrons in one-dimensional quasicrystals, described by the Aubry-Andr{e}-Harper (AAH) Hamiltonian with nearest neighbour hopping, undergoes metal to insulator transition (MIT) at a critical strength of the quasi-periodic po
We study the anomalous proximity effect in diffusive normal metal (DN)/unconventional superconductor junctions, where the local density of states (LDOS) in the DN has a zero-energy peak due to the penetration of the odd-frequency spin-triplet $s$-wav