ﻻ يوجد ملخص باللغة العربية
Using spin polarized neutron reflectivity experiments, we demonstrate an unusual proximity behaviour when the superconductor (SC) and the ferromagnet (FM) are coupled through an insulator (I) in YBa2Cu3O7-{delta} (SC)/SrTiO3 (I)/La0.67Sr0.33MnO3 (FM) heterostructures. We have observed an unexpected magnetic modulation at the interface region of the FM below the superconducting transition temperature. The magnetization of the FM layer at the I/FM interface was drastically reduced as compared to the magnetization in the rest of the FM layer. This result indicates that the Cooper pairs tunnel across the insulator and interact with the local magnetization at the interface region (extending ~ 30 {AA}) of the FM causing modification of the magnetization at the interface. This unexpected magnetic behavior cannot be explained on the basis of the existing theoretical models. However, the length scale associated here clearly suggests the long range proximity effect as a result of tunneling of Cooper pairs.
Interface engineering is an extremely useful tool for systematically investigating materials and the various ways materials interact with each other. We describe different interface engineering strategies designed to reveal the origin of the electric
Thin films of optimally-doped (001)-oriented YBa2Cu3O7-{delta} are epitaxially integrated on silicon (001) through growth on a single crystalline SrTiO3 buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxi
Coexistence of ferromagnetic and superconducting orders and their interplay in ferromagnet-superconductor heterostructures is a topic of intense research. While it is well known that proximity of a ferromagnet suppresses superconducting order in the
The observation of substantially enhanced superconductivity of single-layer FeSe films on SrTiO3 has stimulated intensive research interest. At present, conclusive experimental data on the corresponding electron-boson interaction is still missing. He
A topological superconductor features at its boundaries and vortices Majorana fermions, which are potentially applicable for topological quantum computations. The scarcity of the known experimentally verified physical systems with topological superco