ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting epitaxial YBa2Cu3O7-{delta} on SrTiO3 buffered Si (001)

87   0   0.0 ( 0 )
 نشر من قبل Joe Ngai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin films of optimally-doped (001)-oriented YBa2Cu3O7-{delta} are epitaxially integrated on silicon (001) through growth on a single crystalline SrTiO3 buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxide molecular beam epitaxy. The single crystal nature of the SrTiO3 buffer enables high quality YBa2Cu3O7-{delta} films exhibiting high transition temperatures to be integrated on Si. For a 30 nm thick SrTiO3 buffer, 50 nm thick YBa2Cu3O7-{delta} films that exhibit a transition temperature of ~ 93 K, and a narrow transition width (< 5 K) are achieved. The integration of single crystalline YBa2Cu3O7-{delta} on Si (001) paves the way for the potential exploration of cuprate materials in a variety of applications.



قيم البحث

اقرأ أيضاً

Using spin polarized neutron reflectivity experiments, we demonstrate an unusual proximity behaviour when the superconductor (SC) and the ferromagnet (FM) are coupled through an insulator (I) in YBa2Cu3O7-{delta} (SC)/SrTiO3 (I)/La0.67Sr0.33MnO3 (FM) heterostructures. We have observed an unexpected magnetic modulation at the interface region of the FM below the superconducting transition temperature. The magnetization of the FM layer at the I/FM interface was drastically reduced as compared to the magnetization in the rest of the FM layer. This result indicates that the Cooper pairs tunnel across the insulator and interact with the local magnetization at the interface region (extending ~ 30 {AA}) of the FM causing modification of the magnetization at the interface. This unexpected magnetic behavior cannot be explained on the basis of the existing theoretical models. However, the length scale associated here clearly suggests the long range proximity effect as a result of tunneling of Cooper pairs.
83 - E. Schmidt , K. Ilin , M. Siegel 2016
We investigated the suitability of AlN as a buffer layer for NbN superconducting nanowire single-photon detectors (SNSPDs) on GaAs. The NbN films with a thickness of 3.3 nm to 20 nm deposited onto GaAs substrates with AlN buffer layer, demonstrate a higher critical temperature, critical current density and lower residual resistivity in comparison to films deposited onto bare substrates. Unfortunately, the thermal coupling of the NbN film to the substrate weakens. SNSPDs made of 4.9 nm thick NbN films on buffered substrates (in comparison to detectors made from NbN films on bare GaAs) demonstrate three orders of magnitude lower dark count rates and about ten times higher detection efficiency at 900 nm being measured at 90% of the critical current. The system timing jitter of SNSPDs on buffered substrates is 72 ps which is 36 ps lower than those on bare substrate. However, a weaker thermal coupling of NbN nanowire to the buffered substrate leads to a latching effect at bias currents > 0.97 IC.
123 - Y. Zhou , L. Miao , P. Wang 2016
Single monolayer FeSe film grown on Nb-doped SrTiO$_3$(001) substrate shows the highest superconducting transition temperature (T$_C$ $sim$ 100 K) among the iron-based superconductors (iron-pnictide), while T$_C$ of bulk FeSe is only $sim$ 8 K. Antif erromagnetic spin fluctuations were believed to be crucial in iron-pnictides, which has inspired several proposals to understand the FeSe/SrTiO$_3$ system. Although bulk FeSe does not show the antiferromagnetic order, calculations suggest that the parent FeSe/SrTiO$_3$ films are AFM. Experimentally, due to lacking of direct probe, the magnetic state of FeSe/SrTiO$_3$ films remains mysterious. Here, we report the direct evidences of the antiferromagnetic order in the parent FeSe/SrTiO$_3$ films by the magnetic exchange bias effect measurements. The phase transition temperature is $geq$ 140 K for single monolayer film. The AFM order disappears after electron doping.
Cryogenic scanning tunneling microscopy is employed to investigate the stoichiometry and defects of epitaxial FeSe thin films on SrTiO3(001) substrates under various post-growth annealing conditions. Low-temperature annealing with an excess supply of Se leads to formation of Fe vacancies and superstructures, accompanied by a superconductivity (metal)-to-insulator transition in FeSe films. By contrast, high-temperature annealing could eliminate the Fe vacancies and superstructures, and thus recover the high-temperature superconducting phase of monolayer FeSe films. We also observe multilayer FeSe during low-temperature annealing, which is revealed to link with Fe vacancy formation and adatom migration. Our results document very special roles of film stoichiometry and help unravel several controversies in the properties of monolayer FeSe films.
In this letter, we present the superconducting property characterization of a phase pure reasonably good quality YBa2Cu3O7-{delta} sample. Studied compound is crystallized in orthorhombic Pmmm space group with lattice parameters a, b, and c are 3.829 (2) {AA}, 3.887(1) {AA} and 11.666(3) {AA} respectively. Bulk superconductivity is observed below 90K as evidenced by resistivity and dc/ac magnetization measurements. The resistivity under magnetic field ({rho}TH) measurements showed clearly both the intra-grain and inter-grain transitions, which are supplemented by detailed (varying frequency and amplitude) ac susceptibility studies as well. The upper critical field at 0K i.e., Hc2(0) being determined from {rho}TH measurements with 50% criteria of resistivity drope is ~ 70 Tesla. Studied polycrystalline YBa2Cu3O7-{delta} is subjected to detailed heat capacity (CP) studies. Cp exhibited well defined anomaly at below 90 K, which decreases with applied field. Though the Cp anomaly/peak at Tc reduces with applied field, the same is not completely suppressed in high applied fields of up to 12 Tesla. The Sommerfeld constant ({gamma}) and Debye temperature ({Theta}D) as determined from low temperature fitting of CP(T) data to Sommerfeld-Debye model, are 10.65 mJ/mole-K2 and 312.3 K respectively. The results are compared with existing literature on bulk polycrystalline superconducting YBa2Cu3O7-{delta} sample
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا