ﻻ يوجد ملخص باللغة العربية
We consider the monomial weight $x^{A}=vert x_{1}vert^{a_{1}}ldotsvert x_{N}vert^{a_{N}}$, where $a_{i}$ is a nonnegative real number for each $iin{1,ldots,N}$, and we establish the existence and nonexistence of isoperimetric inequalities with different monomial weights. We study positive minimizers of $int_{partialOmega}x^{A}mathcal{H}^{N-1}(x)$ among all smooth bounded sets $Omega$ in $mathbb{R}^{N}$ with fixed Lebesgue measure with monomial weight $int_{Omega}x^{B}dx$.
We prove the sharp quantitative stability for a wide class of weighted isoperimetric inequalities. More precisely, we consider isoperimetric inequalities in convex cones with homogeneous weights. Inspired by the proof of such isoperimetric inequali
We prove a counterpart of the log-convex density conjecture in the hyperbolic plane.
The main purpose of this paper is to establish the existence, nonexistence and symmetry of nontrivial solutions to the higher order Brezis-Nirenberg problems associated with the GJMS operators $P_k$ on bounded domains in the hyperbolic space $mathbb{
We consider a nonlinear Dirichlet problem driven by the $(p,q)$-Laplacian and with a reaction which is parametric and exhibits the combined effects of a singular term and of a superdiffusive one. We prove an existence and nonexistence result for posi
We consider the nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We gives a sufficient condition for existence of traveling waves, and a necessary condition for existence of periodic traveling waves.