ﻻ يوجد ملخص باللغة العربية
21-cm intensity surveys aim to map neutral hydrogen atoms in the universe through hyper-fine emission. Unfortunately, long-wavelength (low-wavenumber) radial modes are highly contaminated by smooth astrophysical foregrounds that are six orders of magnitude brighter than the cosmological signal. This contamination also leaks into higher radial and angular wavenumber modes and forms a foreground wedge. Cosmic tidal reconstruction aims to extract the large-scale signal from anisotropic features in the local small-scale power spectrum through non-linear tidal interactions; losing small-scale modes to foreground wedge will impair its performance. In this paper, we review tidal interaction theory and estimator construction, and derive the theoretical expressions for the reconstructed spectra. We show the reconstruction is robust against peculiar velocities. Removing low line-of-sight $k$ modes, we demonstrate cross-correlation coefficient $r$ is greater than 0.7 on large scales ($k <0.1$ $h/$Mpc) even with a cutoff value $k^c_{|}=0.1$ $h/$Mpc. Discarding wedge modes yields $0.3< r < 0.5$ and completely removes the dependency on $k^c_{|}$. Our theoretical predictions agree with these numerical simulations.
A nearby friable cloud in Ursa Majoris contains 270 galaxies with radial velocities 500 < VLG < 1500 km s^-1 inside the area of RA= [11h; 13h] and DEC= [+40deg; +60deg]. At present, 97 galaxies of them have individual distance estimates. We use these
We describe the Bayesian BARCODE formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are r
We investigate the possibilities of reconstructing the cosmic equation of state (EoS) for high redshift. In order to obtain general results, we use two model-independent approaches. The first reconstructs the EoS using comoving distance and the secon
Next-generation cosmic microwave background (CMB) experiments will have lower noise and therefore increased sensitivity, enabling improved constraints on fundamental physics parameters such as the sum of neutrino masses and the tensor-to-scalar ratio
In this work we present a nonparametric approach, which works on minimal assumptions, to reconstruct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot smoothing method and a simulation-extrapolation method. Th