ترغب بنشر مسار تعليمي؟ اضغط هنا

Anatomy of Ursa Majoris

93   0   0.0 ( 0 )
 نشر من قبل Helene Courtois
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A nearby friable cloud in Ursa Majoris contains 270 galaxies with radial velocities 500 < VLG < 1500 km s^-1 inside the area of RA= [11h; 13h] and DEC= [+40deg; +60deg]. At present, 97 galaxies of them have individual distance estimates. We use these data to clarify the structure and kinematics of the UMa complex. According to Makarov & Karachentsev (2011), most of the UMa galaxies belong to seven bound groups, which have the following median parameters: velocity dispersion of 58 km s^-1, harmonic projected radius of 300 kpc, virial mass of 2.10^12 Msol, and virial- mass-to-K-band-luminosity of 27Msol/Lsol. Almost a half of the UMa cloud population are gas-rich dwarfs (Ir, Im, BCD) with active star formation seen in the GALEX UV-survey. The UMa groups reside within 15-19 Mpc from us, being just at the same distance as Virgo cluster. The total virial mass of the UMa groups is 4.10^13 Msol, yielding the average density of dark matter in the UMa cloud to be Omega_m = 0.08, i.e. a factor three lower than the cosmic average. This is despite the fact that the UMa cloud resides in a region of the Universe that is an apparent overdensity. A possible explanation for this is that most mass in the Universe lies in the empty space between clusters. Herewith, the mean distances and velocities of the UMa groups follow nearly undisturbed Hubble flow without a sign of the Z-wave effect caused by infall toward a massive attractor. This constrains the total amount of dark matter between the UMa groups within the cloud volume.



قيم البحث

اقرأ أيضاً

275 - Z. Eker , S. Bilir , E. Yaz 2008
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes ($sigma_{pi}/pi<0.15$) which are neither associated with a photometric tertiary nor with evidence of a visual companion, were selected for re-calibrating the Period--Luminosity--Color (PLC) relation of W UMa stars. Using the Lutz--Kelker (LK) bias corrected (most probable) parallaxes, periods ($0.26< P(day)< 0.87$), and colors (0.04<$(B-V)_{0}$<1.28) of the 31 selected W UMa, the PLC relation have been revised and re-calibrated. The difference between the old (revised but not bias corrected) and the new (LK bias corrected) relations are almost negligible in predicting the distances of W UMa stars up to about 100 parsecs. But, it increases and may become intolerable as distances of stars increase. Additionally, using $(J-H)_{0}$ and $(H-K_{s})_{0}$ colors from 2MASS (Two Micron All Sky Survey) data, a PLC relation working with infrared data was derived. It can be used with infrared colors in the range $-0.01<(J-H)_{0}<0.58$, and $-0.10<(H-K_{s})_{0}<0.18$. Despite {em 2MASS} data are single epoch observations, which are not guaranteed at maximum brightness of the W UMa stars, the established relation has been found surprisingly consistent and reliable in predicting LK corrected distances of W UMa stars.
21-cm intensity surveys aim to map neutral hydrogen atoms in the universe through hyper-fine emission. Unfortunately, long-wavelength (low-wavenumber) radial modes are highly contaminated by smooth astrophysical foregrounds that are six orders of mag nitude brighter than the cosmological signal. This contamination also leaks into higher radial and angular wavenumber modes and forms a foreground wedge. Cosmic tidal reconstruction aims to extract the large-scale signal from anisotropic features in the local small-scale power spectrum through non-linear tidal interactions; losing small-scale modes to foreground wedge will impair its performance. In this paper, we review tidal interaction theory and estimator construction, and derive the theoretical expressions for the reconstructed spectra. We show the reconstruction is robust against peculiar velocities. Removing low line-of-sight $k$ modes, we demonstrate cross-correlation coefficient $r$ is greater than 0.7 on large scales ($k <0.1$ $h/$Mpc) even with a cutoff value $k^c_{|}=0.1$ $h/$Mpc. Discarding wedge modes yields $0.3< r < 0.5$ and completely removes the dependency on $k^c_{|}$. Our theoretical predictions agree with these numerical simulations.
We have conducted the first blind HI survey covering 480 deg^2 and a heliocentric velocity range from 300-1900 km/s to investigate the HI content of the nearby spiral-rich Ursa Major region and to look for previously uncatalogued gas-rich objects. He re we present the catalog of HI sources. The HI data were obtained with the 4-beam receiver mounted on the 76.2-m Lovell telescope (FWHM 12 arcmin) at the Jodrell Bank Observatory (UK) as part of the HI Jodrell All Sky Survey (HIJASS). We use the automated source finder DUCHAMP and identify 166 HI sources in the data cubes with HI masses in the range of 10^7 - 10^{10.5} M_sun. Our Ursa Major HI catalogue includes 10 first time detections in the 21-cm emission line. We identify optical counterparts for 165 HI sources (99 per cent). For 54 HI sources (33 per cent) we find numerous optical counterparts in the HIJASS beam, indicating a high density of galaxies and likely tidal interactions. Four of these HI systems are discussed in detail. We find only one HI source (1 per cent) without a visible optical counterpart out of the 166 HI detections. Green Bank Telescope (FWHM 9 arcmin) follow-up observations confirmed this HI source and its HI properties. The nature of this detection is discussed and compared to similar sources in other HI surveys.
Until now, most members of the Ursa Major (UMa) group of stars have been identified by means of kinematic criteria. However, in many cases kinematic criteria alone are insufficient to ascertain, whether an individual star is really a member of this g roup. Since photometric criteria are ineffective in the case of cool dwarf members, one must use spectroscopic criteria. Nevertheless, resulting membership criteria are inconclusive. We reanalyse spectroscopic properties of cool UMa group dwarfs. In particular, we study the distribution of iron abundance, the strength of the Li I absorption at 6708 A and the Li abundance, and the infilling of the core of the H alpha line. Twenty-five cool and northern bona-fide members are carefully selected from the literature. Homogeneously measured stellar parameters and iron abundances are given for all Sun-like stars selected, based on spectra of high resolution and high signal-to-noise ratio. In addition, we measure the Li equivalent width and abundance as well as the relative intensity of the H alpha core and the corresponding chromospheric flux. The studied stars infer an average Ursa Major group iron abundance of -0.03+-0.05 dex, which is higher by about 0.06 dex than determined elsewhere. The Li abundance derived of Ursa Major group dwarf stars is higher than in the Hyades at effective temperatures cooler than the Sun, but lower than in the younger Pleiades, a result which is independent of the exact value of the effective temperature adopted. The Sun-like and cooler dwarfs also display chromospheric infilling of the H alpha core. We present spectroscopic criteria that may be used to exclude non-members.
122 - R. Mark Crockett 2010
(Abridged) We present a spatially-resolved near-UV/optical study of NGC 4150, using the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. Previous studies of this early-type galaxy (ETG) indicate that it has a large reservoir of molecul ar gas, exhibits a kinematically decoupled core (likely indication of recent merging) and strong, central H_B absorption (indicative of young stars). The core of NGC 4150 shows ubiquitous near-UV emission and remarkable dusty substructure. Our analysis shows this galaxy to lie in the near-UV green valley, and its pixel-by-pixel photometry exhibits a narrow range of near-UV/optical colours that are similar to those of nearby E+A (post-starburst) galaxies. We parametrise the properties of the recent star formation (age, mass fraction, metallicity and internal dust content) in the NGC 4150 pixels by comparing the observed near-UV/optical photometry to stellar models. The typical age of the recent star formation (RSF) is around 0.9 Gyrs, consistent with the similarity of the near-UV colours to post-starburst systems, while the morphological structure of the young component supports the proposed merger scenario. The RSF metallicity, representative of the metallicity of the gas fuelling star formation, is around 0.3 - 0.5 Zsun. Assuming that this galaxy is a merger and that the gas is sourced mainly from the infalling companion, these metallicities plausibly indicate the gas-phase metallicity (GPM) of the accreted satellite. Comparison to the local mass-GPM relation suggests (crudely) that the mass of the accreted system is around 3x10^8 Msun, making NGC 4150 a 1:20 minor merger. A summation of the pixel RSF mass fractions indicates that the RSF contributes about 2-3 percent of the stellar mass. This work reaffirms our hypothesis that minor mergers play a significant role in the evolution of ETGs at late epochs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا