ﻻ يوجد ملخص باللغة العربية
We present a measurement of the anisotropic void-galaxy cross-correlation function in the CMASS galaxy sample of the BOSS DR12 data release. We perform a joint fit to the data for redshift space distortions (RSD) due to galaxy peculiar velocities and anisotropies due to the Alcock-Paczynski (AP) effect, for the first time using a velocity field reconstruction technique to remove the complicating effects of RSD in the void centre positions themselves. Fits to the void-galaxy function give a 1% measurement of the AP parameter combination $D_A(z)H(z)/c = 0.4367pm 0.0045$ at redshift $z=0.57$, where $D_A$ is the angular diameter distance and $H$ the Hubble parameter, exceeding the precision obtainable from baryon acoustic oscillations (BAO) by a factor of ~3.5 and free of systematic errors. From voids alone we also obtain a 10% measure of the growth rate, $fsigma_8(z=0.57)=0.501pm0.051$. The parameter degeneracies are orthogonal to those obtained from galaxy clustering. Combining void information with that from BAO and galaxy RSD in the same CMASS sample, we measure $D_A(0.57)/r_s=9.383pm 0.077$ (at 0.8% precision), $H(0.57)r_s=(14.05pm 0.14);10^3$ kms$^{-1}$Mpc$^{-1}$ (1%) and $fsigma_8=0.453pm0.022$ (4.9%), consistent with cosmic microwave background (CMB) measurements from Planck. These represent a factor sim2 improvement in precision over previous results through the inclusion of void information. Fitting a flat cosmological constant $Lambda$CDM model to these results in combination with Planck CMB data, we find up to an 11% reduction in uncertainties on $H_0$ and $Omega_m$ compared to use of the corresponding BOSS consensus values. Constraints on extended models with non-flat geometry and a dark energy of state that differs from $w=-1$ show an even greater improvement.
We use analytic covariance matrices to carry out a full-shape analysis of the galaxy power spectrum multipoles from the Baryon Oscillation Spectroscopic Survey (BOSS). We obtain parameter estimates that agree well with those based on the sample covar
The DMASS sample is a photometric sample from the DES Year 1 data set designed to replicate the properties of the CMASS sample from BOSS, in support of a joint analysis of DES and BOSS beyond the small overlapping area. In this paper, we present the
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%.
We apply two compression methods to the galaxy power spectrum monopole/quadrupole and bispectrum monopole measurements from the BOSS DR12 CMASS sample. Both methods reduce the dimension of the original data-vector to the number of cosmological parame
Our observations of the Universe are fundamentally anisotropic, with data from galaxies separated transverse to the line of sight coming from the same epoch while that from galaxies separated parallel to the line of sight coming from different times.