ﻻ يوجد ملخص باللغة العربية
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%. This will enable use of sample variance cancellation techniques to determine cosmological parameters, and use of cross-correlation measurements to break parameter degeneracies. Assuming large sky overlap between CMB-S4 and LSST, we show that a joint analysis of CMB-S4 lensing and LSST clustering can yield very tight constraints on the matter amplitude $sigma_8(z)$, halo bias, and $f_mathrm{NL}$, competitive with the best stage IV experiment predictions, but using complementary methods, which may carry different and possibly lower systematics. Having no sky overlap between experiments degrades the precision of $sigma_8(z)$ by a factor of 20, and that of $f_mathrm{NL}$ by a factor of 1.5 to 2. Without CMB lensing, the precision always degrades by an order of magnitude or more, showing that a joint analysis is critical. Our results also suggest that CMB lensing in combination with LSS photometric surveys is a competitive probe of the evolution of structure in the redshift range $zsimeq 1-7$, probing a regime that is not well tested observationally. We explore predictions against other surveys and experiment configurations, finding that wide patches with maximal sky overlap between CMB and LSS surveys are most powerful for $sigma_8(z)$ and $f_mathrm{NL}$.
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of th
Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy halos, independent of the details of how galaxies populate dark matter halos. This
We investigate the potential of using cosmic voids as a probe to constrain cosmological parameters through the gravitational lensing effect of the cosmic microwave background (CMB) and make predictions for the next generation surveys. By assuming the
We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-ga
Cosmic Microwave Background (CMB) is a powerful probe to study the early universe and various cosmological models. Weak gravitational lensing affects the CMB by changing its power spectrum, but meanwhile, it also carries information about the distrib