ترغب بنشر مسار تعليمي؟ اضغط هنا

Satellites of Satellites: The Case for Carina and Fornax

68   0   0.0 ( 0 )
 نشر من قبل Stephen Pardy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Auriga cosmological simulations of Milky Way (MW)-mass galaxies and their surroundings to study the satellite populations of dwarf galaxies in $Lambda$CDM. As expected from prior work, the number of satellites above a fixed stellar mass is a strong function of the mass of the primary dwarf. For galaxies as luminous as the Large Magellanic Cloud (LMC), and for halos as massive as expected for the LMC (determined by its rotation speed), the simulations predict about 3 satellites with stellar masses exceeding $M_*>10^5, M_odot$. If the LMC is on its first pericentric passage, then these satellites should be near the LMC and should have orbital angular momenta roughly coincident with that of the LMC. We use 3D positions and velocities from the 2nd data release of the Gaia mission to revisit which of the classical MW dwarf spheroidals could plausibly be LMC satellites. The new proper motions of the Fornax and Carina dwarf spheroidals place them on orbits closely aligned with the orbital plane of the Magellanic Clouds, hinting at a potential Magellanic association. Together with the Small Magellanic Cloud (SMC), this result raises to $3$ the number of LMC satellites with $M_*>10^5, M_odot$, as expected from simulations. This also fills the 12-mag luminosity gap between the SMC and the ultra-faints Hyi1, Car2, Hor1, and Car3, the few ultra-faint satellites confirmed to have orbits consistent with a Magellanic origin.



قيم البحث

اقرأ أيضاً

119 - V. Belokurov 2009
We announce the discovery of a new Milky Way satellite Segue 2 found in the data of the Sloan Extension for Galactic Understanding and Exploration (SEGUE). We followed this up with deeper imaging and spectroscopy on the Multiple Mirror Telescope. Fro m this, we derive a luminosity of M_v = -2.5, a half-light radius of 34 pc and a systemic velocity of -40$ km/s. Our MMT data also provides evidence for a stream around Segue 2 at a similar heliocentric velocity, and the SEGUE data show that it is also present in neighboring fields. We resolve the velocity dispersion of Segue 2 as 3.4 km/s and the possible stream as about 7 km/s. This object shows points of comparison with other recent discoveries, Segue 1, Boo II and Coma. We speculate that all four objects may be representatives of a population of satellites of satellites -- survivors of accretion events that destroyed their larger but less dense parents. They are likely to have formed at redshifts z > 10 and are good candidates for fossils of the reionization epoch.
The five classical Uranian moons are possible ocean worlds that exhibit bizarre geologic landforms, hinting at recent surface-interior communication. However, Uranus classical moons, as well as its ring moons and irregular satellites, remain poorly u nderstood. We assert that a Flagship-class orbiter is needed to explore the Uranian satellites.
We present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the CarinaII (Car II) & Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey ( MagLiteS). We identify 18 member stars in Car II, including 2 binaries with variable radial velocities and 2 RR Lyrae stars. The other 14 members have a mean heliocentric velocity $v_{rm hel} = 477.2 pm 1.2$ km/s and a velocity dispersion of $sigma_v = 3.4^{+1.2}_{-0.8}$ km/s. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $1.0^{+0.8}_{-0.4} times 10^{6} M_odot$, indicating a mass-to-light ratio of $369^{+309}_{-161} M_odot/L_odot$. From equivalent width measurements of the calcium triplet lines of 9 RGB stars, we derive a mean metallicity of [Fe/H] = $-2.44 pm 0.09$ with dispersion $sigma_{rm [Fe/H]} = 0.22 ^{+0.10}_{-0.07}$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify 4 member stars, from which we calculate a systemic velocity of $v_{rm hel} = 284.6^{+3.4}_{-3.1}$ km/s. The brightest RGB member of Car III has a metallicity of [Fe/H] $= -1.97 pm 0.12$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($Delta dsim10~kpc$) among Local Group satellites, the large difference in their systemic velocities, $sim200$ km/s, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of $gamma$-rays emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.
Numerical simulations of the effect of a long-range scalar interaction (LRSI) acting only on nonbaryonic dark matter, with strength comparable to gravity, show patterns of disruption of satellites that can agree with what is seen in the Milky Way. Th is includes the symmetric Sagittarius stellar stream. The exception presented here to the Kesden and Kamionkowski demonstration that an LRSI tends to produce distinctly asymmetric streams follows if the LRSI is strong enough to separate the stars from the dark matter before tidal disruption of the stellar component, and if stars dominate the mass in the luminous part of the satellite. It requires that the Sgr galaxy now contains little dark matter, which may be consistent with the Sgr stellar velocity dispersion, for in the simulation the dispersion at pericenter exceeds virial. We present other examples of simulations in which a strong LRSI produces satellites with large mass-to-light ratio, as in Draco, or free streams of stars, which might be compared to orphan streams.
We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromedas Stellar Halo survey. We present the photometric pro perties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color-color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the samples eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا