ترغب بنشر مسار تعليمي؟ اضغط هنا

Ships Passing in the Night: Spectroscopic Analysis of Two Ultra-Faint Satellites in the Constellation Carina

63   0   0.0 ( 0 )
 نشر من قبل Ting Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Magellan/IMACS, Anglo-Australian Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES spectroscopy of the CarinaII (Car II) & Carina III (Car III) dwarf galaxy candidates, recently discovered in the Magellanic Satellites Survey (MagLiteS). We identify 18 member stars in Car II, including 2 binaries with variable radial velocities and 2 RR Lyrae stars. The other 14 members have a mean heliocentric velocity $v_{rm hel} = 477.2 pm 1.2$ km/s and a velocity dispersion of $sigma_v = 3.4^{+1.2}_{-0.8}$ km/s. Assuming Car II is in dynamical equilibrium, we derive a total mass within the half-light radius of $1.0^{+0.8}_{-0.4} times 10^{6} M_odot$, indicating a mass-to-light ratio of $369^{+309}_{-161} M_odot/L_odot$. From equivalent width measurements of the calcium triplet lines of 9 RGB stars, we derive a mean metallicity of [Fe/H] = $-2.44 pm 0.09$ with dispersion $sigma_{rm [Fe/H]} = 0.22 ^{+0.10}_{-0.07}$. Considering both the kinematic and chemical properties, we conclude that Car II is a dark-matter-dominated dwarf galaxy. For Car III, we identify 4 member stars, from which we calculate a systemic velocity of $v_{rm hel} = 284.6^{+3.4}_{-3.1}$ km/s. The brightest RGB member of Car III has a metallicity of [Fe/H] $= -1.97 pm 0.12$. Due to the small size of the Car III spectroscopic sample, we cannot conclusively determine its nature. Although these two systems have the smallest known physical separation ($Delta dsim10~kpc$) among Local Group satellites, the large difference in their systemic velocities, $sim200$ km/s, indicates that they are unlikely to be a bound pair. One or both systems are likely associated with the Large Magellanic Cloud (LMC), and may remain LMC satellites today. No statistically significant excess of $gamma$-rays emission is found at the locations of Car II and Car III in eight years of Fermi-LAT data.



قيم البحث

اقرأ أيضاً

173 - V. Belokurov 2010
We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of ~180 kpc, some 15 deg rees away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of ~60 pc, while Segue 3 is twenty times smaller at only 3pc.
We use the Auriga cosmological simulations of Milky Way (MW)-mass galaxies and their surroundings to study the satellite populations of dwarf galaxies in $Lambda$CDM. As expected from prior work, the number of satellites above a fixed stellar mass is a strong function of the mass of the primary dwarf. For galaxies as luminous as the Large Magellanic Cloud (LMC), and for halos as massive as expected for the LMC (determined by its rotation speed), the simulations predict about 3 satellites with stellar masses exceeding $M_*>10^5, M_odot$. If the LMC is on its first pericentric passage, then these satellites should be near the LMC and should have orbital angular momenta roughly coincident with that of the LMC. We use 3D positions and velocities from the 2nd data release of the Gaia mission to revisit which of the classical MW dwarf spheroidals could plausibly be LMC satellites. The new proper motions of the Fornax and Carina dwarf spheroidals place them on orbits closely aligned with the orbital plane of the Magellanic Clouds, hinting at a potential Magellanic association. Together with the Small Magellanic Cloud (SMC), this result raises to $3$ the number of LMC satellites with $M_*>10^5, M_odot$, as expected from simulations. This also fills the 12-mag luminosity gap between the SMC and the ultra-faints Hyi1, Car2, Hor1, and Car3, the few ultra-faint satellites confirmed to have orbits consistent with a Magellanic origin.
173 - Joshua D. Simon 2018
The second data release from the Gaia mission (DR2) provides a comprehensive and unprecedented picture of the motions of astronomical sources in the plane of the sky, extending from the solar neighborhood to the outer reaches of the Milky Way. I pres ent proper motion measurements based on Gaia DR2 for 17 ultra-faint dwarf galaxies within 100 kpc of the Milky Way. I compile the spectroscopically-confirmed member stars in each dwarf bright enough for Gaia astrometry from the literature, producing member samples ranging from 2 stars in Triangulum II to 68 stars in Bootes I. From the spectroscopic member catalogs I estimate the proper motion of each system. I find good agreement with the proper motions derived by the Gaia collaboration for Bootes I and Leo I. The tangential velocities for 14 of the 17 dwarfs are determined to better than 50 km/s, more than doubling the sample of such measurements for Milky Way satellite galaxies. The orbital pericenters are well-constrained, with a median value of 38 kpc. Only one satellite, Tucana III, is on an orbit passing within 15 kpc of the Galactic center, suggesting that the remaining ultra-faint dwarfs are unlikely to have experienced severe tidal stripping. As a group, the ultra-faint dwarfs are on high-velocity, eccentric, retrograde trajectories, with nearly all of them having space motions exceeding 370 km/s. In a low-mass (M_vir = 0.8 x 10^12 M_sun) Milky Way potential, eight out of the 17 galaxies lack well-defined apocenters and appear likely to be on their first infall, indicating that the Milky Way mass may be larger than previously estimated or that many of the ultra-faint dwarfs are associated with the Magellanic Clouds. The median eccentricity of the ultra-faint dwarf orbits is 0.79, similar to the values seen in numerical simulations, but distinct from the rounder orbits of the more luminous dwarf spheroidals.
We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness ({mu} = 28.5 mag arcsec$^{- 2}$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of 45 kpc. The physical size (r$_{1/2}$ = 46 pc) and low luminosity (Mv = -3.2 mag) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located 11.3 kpc from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.
Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts ($z>7.5$; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at $z>7.5$. We detected the Lyman-$alpha$ emission line at $sim 10504$ {AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescopes slit-less grism spectrograph, implying a source redshift of $z = 7.640 pm 0.001$. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 ($z = 0.545$), with an estimated intrinsic luminosity of $M_{AB} = -19.6 pm 0.2$ mag and a stellar mass of $M_{star} = 3.0^{+1.5}_{-0.8} times 10^8$ solar masses. Both are an order of magnitude lower than the four other Lyman-$alpha$ emitters currently known at $z > 7.5$, making it probably the most distant representative source of reionization found to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا