ترغب بنشر مسار تعليمي؟ اضغط هنا

Perceive Where to Focus: Learning Visibility-aware Part-level Features for Partial Person Re-identification

94   0   0.0 ( 0 )
 نشر من قبل Sun Yifan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers a realistic problem in person re-identification (re-ID) task, i.e., partial re-ID. Under partial re-ID scenario, the images may contain a partial observation of a pedestrian. If we directly compare a partial pedestrian image with a holistic one, the extreme spatial misalignment significantly compromises the discriminative ability of the learned representation. We propose a Visibility-aware Part Model (VPM), which learns to perceive the visibility of regions through self-supervision. The visibility awareness allows VPM to extract region-level features and compare two images with focus on their shared regions (which are visible on both images). VPM gains two-fold benefit toward higher accuracy for partial re-ID. On the one hand, compared with learning a global feature, VPM learns region-level features and benefits from fine-grained information. On the other hand, with visibility awareness, VPM is capable to estimate the shared regions between two images and thus suppresses the spatial misalignment. Experimental results confirm that our method significantly improves the learned representation and the achieved accuracy is on par with the state of the art.



قيم البحث

اقرأ أيضاً

Occluded person re-identification (Re-ID) is a challenging task as persons are frequently occluded by various obstacles or other persons, especially in the crowd scenario. To address these issues, we propose a novel end-to-end Part-Aware Transformer (PAT) for occluded person Re-ID through diverse part discovery via a transformer encoderdecoder architecture, including a pixel context based transformer encoder and a part prototype based transformer decoder. The proposed PAT model enjoys several merits. First, to the best of our knowledge, this is the first work to exploit the transformer encoder-decoder architecture for occluded person Re-ID in a unified deep model. Second, to learn part prototypes well with only identity labels, we design two effective mechanisms including part diversity and part discriminability. Consequently, we can achieve diverse part discovery for occluded person Re-ID in a weakly supervised manner. Extensive experimental results on six challenging benchmarks for three tasks (occluded, partial and holistic Re-ID) demonstrate that our proposed PAT performs favorably against stat-of-the-art methods.
Person Re-identification (ReID) is to identify the same person across different cameras. It is a challenging task due to the large variations in person pose, occlusion, background clutter, etc How to extract powerful features is a fundamental problem in ReID and is still an open problem today. In this paper, we design a Multi-Scale Context-Aware Network (MSCAN) to learn powerful features over full body and body parts, which can well capture the local context knowledge by stacking multi-scale convolutions in each layer. Moreover, instead of using predefined rigid parts, we propose to learn and localize deformable pedestrian parts using Spatial Transformer Networks (STN) with novel spatial constraints. The learned body parts can release some difficulties, eg pose variations and background clutters, in part-based representation. Finally, we integrate the representation learning processes of full body and body parts into a unified framework for person ReID through multi-class person identification tasks. Extensive evaluations on current challenging large-scale person ReID datasets, including the image-based Market1501, CUHK03 and sequence-based MARS datasets, show that the proposed method achieves the state-of-the-art results.
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident ification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
Person re-identification (reID) by CNNs based networks has achieved favorable performance in recent years. However, most of existing CNNs based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-tempo ral context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, Interaction-Aggregation-Update (IAU), for high-performance person reID. Firstly, Spatial-Temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame. While the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a Channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state-of-the-art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.
Person re-identification (Re-ID) aims to match pedestrians under dis-joint cameras. Most Re-ID methods formulate it as visual representation learning and image search, and its accuracy is consequently affected greatly by the search space. Spatial-tem poral information has been proven to be efficient to filter irrelevant negative samples and significantly improve Re-ID accuracy. However, existing spatial-temporal person Re-ID methods are still rough and do not exploit spatial-temporal information sufficiently. In this paper, we propose a novel Instance-level and Spatial-Temporal Disentangled Re-ID method (InSTD), to improve Re-ID accuracy. In our proposed framework, personalized information such as moving direction is explicitly considered to further narrow down the search space. Besides, the spatial-temporal transferring probability is disentangled from joint distribution to marginal distribution, so that outliers can also be well modeled. Abundant experimental analyses are presented, which demonstrates the superiority and provides more insights into our method. The proposed method achieves mAP of 90.8% on Market-1501 and 89.1% on DukeMTMC-reID, improving from the baseline 82.2% and 72.7%, respectively. Besides, in order to provide a better benchmark for person re-identification, we release a cleaned data list of DukeMTMC-reID with this paper: https://github.com/RenMin1991/cleaned-DukeMTMC-reID/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا