ترغب بنشر مسار تعليمي؟ اضغط هنا

Diverse Part Discovery: Occluded Person Re-identification with Part-Aware Transformer

273   0   0.0 ( 0 )
 نشر من قبل Yulin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Occluded person re-identification (Re-ID) is a challenging task as persons are frequently occluded by various obstacles or other persons, especially in the crowd scenario. To address these issues, we propose a novel end-to-end Part-Aware Transformer (PAT) for occluded person Re-ID through diverse part discovery via a transformer encoderdecoder architecture, including a pixel context based transformer encoder and a part prototype based transformer decoder. The proposed PAT model enjoys several merits. First, to the best of our knowledge, this is the first work to exploit the transformer encoder-decoder architecture for occluded person Re-ID in a unified deep model. Second, to learn part prototypes well with only identity labels, we design two effective mechanisms including part diversity and part discriminability. Consequently, we can achieve diverse part discovery for occluded person Re-ID in a weakly supervised manner. Extensive experimental results on six challenging benchmarks for three tasks (occluded, partial and holistic Re-ID) demonstrate that our proposed PAT performs favorably against stat-of-the-art methods.



قيم البحث

اقرأ أيضاً

Person Re-Identification (Re-Id) in occlusion scenarios is a challenging problem because a pedestrian can be partially occluded. The use of local information for feature extraction and matching is still necessary. Therefore, we propose a Pose-guided inter-and intra-part relational transformer (Pirt) for occluded person Re-Id, which builds part-aware long-term correlations by introducing transformers. In our framework, we firstly develop a pose-guided feature extraction module with regional grouping and mask construction for robust feature representations. The positions of a pedestrian in the image under surveillance scenarios are relatively fixed, hence we propose an intra-part and inter-part relational transformer. The intra-part module creates local relations with mask-guided features, while the inter-part relationship builds correlations with transformers, to develop cross relationships between part nodes. With the collaborative learning inter- and intra-part relationships, experiments reveal that our proposed Pirt model achieves a new state of the art on the public occluded dataset, and further extensions on standard non-occluded person Re-Id datasets also reveal our comparable performances.
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t he conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a persons identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.
Person re-identification (re-ID) under various occlusions has been a long-standing challenge as person images with different types of occlusions often suffer from misalignment in image matching and ranking. Most existing methods tackle this challenge by aligning spatial features of body parts according to external semantic cues or feature similarities but this alignment approach is complicated and sensitive to noises. We design DRL-Net, a disentangled representation learning network that handles occluded re-ID without requiring strict person image alignment or any additional supervision. Leveraging transformer architectures, DRL-Net achieves alignment-free re-ID via global reasoning of local features of occluded person images. It measures image similarity by automatically disentangling the representation of undefined semantic components, e.g., human body parts or obstacles, under the guidance of semantic preference object queries in the transformer. In addition, we design a decorrelation constraint in the transformer decoder and impose it over object queries for better focus on different semantic components. To better eliminate interference from occlusions, we design a contrast feature learning technique (CFL) for better separation of occlusion features and discriminative ID features. Extensive experiments over occluded and holistic re-ID benchmarks (Occluded-DukeMTMC, Market1501 and DukeMTMC) show that the DRL-Net achieves superior re-ID performance consistently and outperforms the state-of-the-art by large margins for Occluded-DukeMTMC.
Re-identifying a person across multiple disjoint camera views is important for intelligent video surveillance, smart retailing and many other applications. However, existing person re-identification (ReID) methods are challenged by the ubiquitous occ lusion over persons and suffer from performance degradation. This paper proposes a novel occlusion-robust and alignment-free model for occluded person ReID and extends its application to realistic and crowded scenarios. The proposed model first leverages the full convolution network (FCN) and pyramid pooling to extract spatial pyramid features. Then an alignment-free matching approach, namely Foreground-aware Pyramid Reconstruction (FPR), is developed to accurately compute matching scores between occluded persons, despite their different scales and sizes. FPR uses the error from robust reconstruction over spatial pyramid features to measure similarities between two persons. More importantly, we design an occlusion-sensitive foreground probability generator that focuses more on clean human body parts to refine the similarity computation with less contamination from occlusion. The FPR is easily embedded into any end-to-end person ReID models. The effectiveness of the proposed method is clearly demonstrated by the experimental results (Rank-1 accuracy) on three occluded person datasets: Partial REID (78.30%), Partial iLIDS (68.08%) and Occluded REID (81.00%); and three benchmark person datasets: Market1501 (95.42%), DukeMTMC (88.64%) and CUHK03 (76.08%)
In real-world video surveillance applications, person re-identification (ReID) suffers from the effects of occlusions and detection errors. Despite recent advances, occlusions continue to corrupt the features extracted by state-of-art CNN backbones, and thereby deteriorate the accuracy of ReID systems. To address this issue, methods in the literature use an additional costly process such as pose estimation, where pose maps provide supervision to exclude occluded regions. In contrast, we introduce a novel Holistic Guidance (HG) method that relies only on person identity labels, and on the distribution of pairwise matching distances of datasets to alleviate the problem of occlusion, without requiring additional supervision. Hence, our proposed student-teacher framework is trained to address the occlusion problem by matching the distributions of between- and within-class distances (DCDs) of occluded samples with that of holistic (non-occluded) samples, thereby using the latter as a soft labeled reference to learn well separated DCDs. This approach is supported by our empirical study where the distribution of between- and within-class distances between images have more overlap in occluded than holistic datasets. In particular, features extracted from both datasets are jointly learned using the student model to produce an attention map that allows separating visible regions from occluded ones. In addition to this, a joint generative-discriminative backbone is trained with a denoising autoencoder, allowing the system to self-recover from occlusions. Extensive experiments on several challenging public datasets indicate that the proposed approach can outperform state-of-the-art methods on both occluded and holistic datasets
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا