ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoreactivity of condensed acetylene on Titan aerosols analogues

82   0   0.0 ( 0 )
 نشر من قبل Nathalie Carrasco
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Volatile organic molecules formed by photochemistry in the upper atmosphere of Titan can undergo condensation as pure ices in the stratosphere and the troposphere as well as condense as ice layers onto the organic aerosols that are visible as the haze layers of Titan. As solar photons penetrate through Titan s atmosphere, shorter-wavelength photons are attenuated and longerwavelength photons make it into the lower altitudes, where aerosols become abundant. We conducted an experimental study to evaluate the long wavelength ( > 300 nm) photo-reactivity of these ices accreted on the Titan aerosol-analogs (also known as tholins) made in the laboratory. We have focused on acetylene, the third most abundant hydrocarbon in Titan s atmosphere after CH4 and C2H6. Further, acetylene is the most abundant unsaturated hydrocarbon in Titan s atmosphere. Our results indicate that the aerosols can act as activation centers to drive the photoreactivity of acetylene with the aerosols at the accretion interface at wavelengths where acetylene-ice alone does not show photoreactivity. We found that along with photochemistry, photodesorption plays an important role. We observed that about 15% of the initial acetylene is photodesorbed, with a photodesorption rate of (2.1 +/- 0.2) x 10-6 molecules.photon-1 at 355 nm. This photodesorption is wavelength-dependent, confirming that it is mediated by the UV absorption of the aerosol analogues, similar to photochemistry. We conclude that the UV-Vis properties of aerosols would determine how they evolve further in Titan s atmosphere and on the surface through photochemical alterations involving longer wavelength photons.



قيم البحث

اقرأ أيضاً

Titan, the biggest moon of Saturn, has a thick atmosphere which presents similarities with the one thought to be on Earth at its beginning. The study of Titan s photochemical haze is thus a precious tool in gaining knowledge of the primitive atmosphe re of Earth. The chemistry occurring in Titan s atmosphere and the exact processes at act in the formation of the hazes remain largely unknown. The production of analogs samples on Earth has proved to be a useful tool to improve our knowledge of the aerosols formation on Titan. Such solid organic analogs samples, named tholins, were produced with the PAMPRE experiment (French acronym for Aerosols Microgravity Production by Reactive Plasma). PAMPRE tholins were found to be mostly insoluble, with only one-third of the bulk sample that can be dissolved in methanol. This partial solubility limited the previous studies in mass spectrometry, which were done only on the soluble fraction. The goal of the present study is to compare the two fractions of PAMPRE s tholins (insoluble and soluble) using a ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometer (FTICR) equipped with a laser desorption/ionization source. Using modified Van Krevelen diagrams, we compare the global distribution of the molecules within the samples according to their Hydrogen/Carbon ratio and Nitrogen/Carbon ratio. Major differences are observed in the molecular composition of the soluble and the insoluble fraction. The soluble fraction of tholins was previously identified as a set of polymers of average formula (C2H3N)n. In this work we observe that the insoluble fraction of tholins is comprised of a significantly different set of polymers with an average composition of (C4H3N2)n.
Numerous studies have been carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), but their molecular composition as well as their structure are still poorly known. If pyrolysis gas chromatography ma ss spectrometry (pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained can be attributed to the analytical conditions used and/or to differences in the nature of the analogues studied. In order to have a better description of Titan tholins molecular composition, we led a systematic analysis of these materials using pyr-GCMS with two major objectives: (i) exploring the analytical parameters to estimate the biases this technique can induce and to find an optimum for analyses allowing the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholins molecular structure. With this aim, we used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were systematically pyrolyzed from 200 to 600{deg}C. The extracted gases were then analyzed by GCMS for their molecular identification.
Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan atmospheric aerosol s, but films are used to provide optical indices for radiative models of Titan atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4 N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan radiative models.
The atmosphere of Titan, the largest moon of Saturn, is rich in organic molecules, and it has been suggested that the moon may serve as an analog for the pre-biotic Earth due to its highly reducing chemistry and existence of global hazes. Photochemic al models of Titan have predicted the presence of propadiene (historically referred to as allene), CH$_{2}$CCH$_{2}$, an isomer of the well-measured propyne (also called methylacetylene) CH$_{3}$CCH, but its detection has remained elusive due to insufficient spectroscopic knowledge of the molecule - which has recently been remedied with an updated spectral line list. Here we present the first unambiguous detection of the molecule in any astronomical object, observed with the Texas Echelle Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility (IRTF) in July 2017. We model its emission line near 12 $mu$m and measure a volume mixing ratio (VMR) of (6.9 $pm$ 0.8) $times$10$^{-10}$ at 175 km, assuming a vertically increasing abundance profile as predicted in photochemical models. Cassini measurements of propyne made during April 2017 indicate that the abundance ratio of propyne to propadiene is 8.2$pm$1.1 at the same altitude. This initial measurement of the molecule in Titans stratosphere paves the way towards constraining the amount of atomic hydrogen available on Titan, as well as future mapping of propadiene on Titan from 8 meter and larger ground based observatories, and future detection on other planetary bodies.
The chemical composition of Titan organic haze is poorly known. To address this issue, laboratory analogs named tholins are synthesized, and analyzed by methods requiring often an extraction process in a carrier solvent. These methods exclude the ana lysis of the insoluble tholins fraction and assume a hypothetical chemical equivalence between soluble and insoluble fractions. In this work, we present a powerful complementary analysis method recently developed on the DESIRS VUV synchrotron beamline at SOLEIL. It involves a soft pyrolysis of tholins at ~230 deg C and an electron ion coincidence analysis of the emitted volatiles compounds photoionized by the tunable synchrotron radiation. By comparison with reference photoelectron spectra (PES), the spectral information collected on the detected molecules yields their isomeric structure. The method is more readily applied to light species, while for heavier ones the number of possibilities and the lack of PES reference spectra in the literature limit its analysis. A notable pattern in the analyzed tholins is the presence of species containing adjacent doubly-bonded N atoms, which might be a signature of heterogeneous incorporation of N2 in tholins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا