ﻻ يوجد ملخص باللغة العربية
The chemical composition of Titan organic haze is poorly known. To address this issue, laboratory analogs named tholins are synthesized, and analyzed by methods requiring often an extraction process in a carrier solvent. These methods exclude the analysis of the insoluble tholins fraction and assume a hypothetical chemical equivalence between soluble and insoluble fractions. In this work, we present a powerful complementary analysis method recently developed on the DESIRS VUV synchrotron beamline at SOLEIL. It involves a soft pyrolysis of tholins at ~230 deg C and an electron ion coincidence analysis of the emitted volatiles compounds photoionized by the tunable synchrotron radiation. By comparison with reference photoelectron spectra (PES), the spectral information collected on the detected molecules yields their isomeric structure. The method is more readily applied to light species, while for heavier ones the number of possibilities and the lack of PES reference spectra in the literature limit its analysis. A notable pattern in the analyzed tholins is the presence of species containing adjacent doubly-bonded N atoms, which might be a signature of heterogeneous incorporation of N2 in tholins.
Titan, the biggest moon of Saturn, has a thick atmosphere which presents similarities with the one thought to be on Earth at its beginning. The study of Titan s photochemical haze is thus a precious tool in gaining knowledge of the primitive atmosphe
Numerous studies have been carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), but their molecular composition as well as their structure are still poorly known. If pyrolysis gas chromatography ma
Volatile organic molecules formed by photochemistry in the upper atmosphere of Titan can undergo condensation as pure ices in the stratosphere and the troposphere as well as condense as ice layers onto the organic aerosols that are visible as the haz
Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump
Time-resolved pump-probe measurements of Xe, pumped at 133~nm and probed at 266~nm, are presented. The pump pulse prepared a long-lived hyperfine wavepacket, in the Xe $5p^5(^2P^{circ}_{1/2})6s~^2[1/2]^{circ}_1$ manifold ($E=$77185 cm$^{-1}=$9.57 eV)