ﻻ يوجد ملخص باللغة العربية
Compensated isocurvature perturbations (CIPs) are opposite spatial fluctuations in the baryon and dark matter density. They can be generated for example in the curvaton model in the early Universe but are difficult to observe because their gravitational imprint nearly cancels. We therefore propose a new measurement method by searching for a spatial modulation of the baryon acoustic oscillation (BAO) scale that CIPs induce. We find that for a Euclid-like survey the sensitivity is marginally better than the WMAP cosmic microwave background (CMB) constraint, which exploits the CIP-induced modulation of the CMB sound horizon. For a cosmic-variance limited BAO survey using emission-line galaxies up to $zsim7$ the sensitivity is between stage 3 and stage 4 CMB experiments. These results include using CIP-galaxy cross-correlations, which improves the sensitivity by a factor of $sim2-3$ for correlated CIPs. The method could be further improved with an optimal estimator, similarly to the CMB, and could provide a useful cross-check of other CIP probes. Finally, if CIPs exist, they can bias cosmological measurements made assuming no CIPs. In particular, they can act as a super-sample fluctuation of the baryon density and bias measurements of the BAO scale. For modern BAO surveys, the largest 2$sigma$ CIP fluctuation allowed by Plancks 95% bound could bias BAO measurements of $H(z)$ by 2.2%, partially reducing the tension with the local $H_0$ measurements from 3.1$sigma$ to 2.3$sigma$.
A compensated isocurvature perturbation consists of an overdensity (or underdensity) in the cold dark matter which is completely cancelled out by a corresponding underdensity (or overdensity) in the baryons. Such a configuration may be generated by a
We investigate the potential of the galaxy power spectrum to constrain compensated isocurvature perturbations (CIPs), primordial fluctuations in the baryon density that are compensated by fluctuations in CDM density to ensure an unperturbed total mat
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in additi
If the hemispherical power asymmetry observed in the cosmic microwave background (CMB) on large angular scales is attributable to a superhorizon curvaton fluctuation, then the simplest model predicts that the primordial density fluctuations should be
Small fractions of isocurvature perturbations correlated with the dominant adiabatic mode are shown to be a significant primordial systematic for future Baryon Acoustic Oscillation (BAO) surveys, distorting the standard ruler distance by broadening a