ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring outcome correlation for spin-s Bell cat-state and geometric phase induced spin parity effect

58   0   0.0 ( 0 )
 نشر من قبل Jiuqing Liang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In terms of quantum probability statistics the Bell inequality (BI) and its violation are extended to spin-$s$ entangled Schr{o}dinger cat-state (called the Bell cat-state) with both parallel and antiparallel spin-polarizations. The BI is never ever violated for the measuring outcome probabilities evaluated over entire two-spin Hilbert space except the spin-$1/2$ entangled states. A universal Bell-type inequality (UBI) denoted by $p_{s}^{lc}leq0$ is formulated with the local realistic model under the condition that the measuring outcomes are restricted in the subspace of spin coherent states. A spin parity effect is observed that the UBI can be violated only by the Bell cat-states of half-integer but not the integer spins. The violation of UBI is seen to be a direct result of non-trivial Berry phase between the spin coherent states of south- and north-pole gauges for half-integer spin, while the geometric phase is trivial for the integer spins. A maximum violation bound of UBI is found as $p_{s}^{max}$=1, which is valid for arbitrary half-integer spin-$s$ states.



قيم البحث

اقرأ أيضاً

A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode is proposed. The analytical and numerical results show that the ultimate degree of spin squeezing depends on the parameter $frac{n_{th}+1/2}{Qsqrt{N}}$, wh ich is the ratio between the thermal excitation, the quality factor and square root of ensemble size. The undesired coupling between the spin ensemble and the bath can be efficiently suppressed by Bang-Bang control pulses. With high quality factor, the ultimate limit of the ideal one-axis twisting spin squeezing can be obtained for an NV ensemble in diamond.
213 - Dongkeun Lee , Wonmin Son 2020
For the identification of non-trivial quantum phase, we exploit a Bell-type correlation that is applied to the one-dimensional spin-1 XXZ chain. It is found that our generalization of bipartite Bell correlation can take a decomposed form of transvers e spin correlation together with high-order terms. The formulation of density-matrix renormalisation group is utilized to obtain the ground state of a given Hamiltonian with non-trivial phase. Subsequently Bell-SLK-type generalized correlation is evaluated through the analysis of the matrix product state. Diverse classes of quantum phase transitions in the spin-1 model are identified precisely through the evaluation of the first and the second moments of the generalized Bell correlations. The role of high-order terms in the criticality has been identified and their physical implications for the quantum phase has been revealed.
We propose a postselecting parity-swap amplifier for Schrodinger cat states that does not require the amplified state to be known a priori. The device is based on a previously-implemented state comparison amplifier for coherent states. It consumes on ly Gaussian resource states, which provides an advantage over some cat state amplifiers. It requires simple Geiger-mode photodetectors and works with high fidelity and approximately twofold gain.
We consider a spin belonging to a many body system in a magnetically ordered phase, which initial state is a symmetry broken ground state. We assume that in this system a sudden quench of the Hamiltonian induces an evolution. We show that the long ti me behavior of the spin state, can be approximated by the one of an open two level system in which the evolution preserves all the symmetries of the Hamiltonian. Exploiting such a result we analyze the geometric phase associated with the evolution of the single spin state and we prove analytically that its long time behavior depends on the physical phase realized after the quench. When the system arrives in a paramagnetic phase, the geometric phase shows a periodic behavior that is absent in the case in which the system remains in the initial ordered phase. Such a difference also survives in finite size systems until boundary effects come into play. We also discuss the effects of a explicit violation of the parity symmetry of the Hamiltonian and possible applications to the problem of the entanglement thermalization.
272 - Arun K. Pati 1998
We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast sys tem. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا