ﻻ يوجد ملخص باللغة العربية
The nearby Perseus galaxy cluster is a key target for indirect detection searches for decaying dark matter. We use the C-EAGLE simulations of galaxy clusters to predict the flux, width and shape of a dark matter decay line, paying particular attention to the unexplained 3.55keV line detected in the spectra of some galaxies and clusters, and the upcoming XRISM X-ray observatory mission. We show that the line width in C-EAGLE clusters similar to Perseus is typically [600-800]$mathrm{kms^{-1}}$, and therefore narrower than the amplitude of the velocity dispersion of galaxies in the cluster. Haloes that are significantly disturbed can, however, exhibit galaxy velocity dispersions higher than $1000mathrm{kms^{-1}}$, and in this case will show a large difference between the line profiles of on- and off-center observations. We show that the line profile is likely to be slightly asymmetric, but still well approximated by a Gaussian at the 10% level, and that the halo asymmetry can lead to fluxes that vary by a factor of two. In summary, we predict that, if the previously reported 3.55keV line detections do originate from dark matter decay, the XRISM mission will detect a line with a roughly Gaussian profile at a rest frame energy of 3.55keV, with a width $>600mathrm{kms^{-1}}$ and flux approximately in the range $[4-9]times10^{-8}mathrm{counts/sec/cm^{2}}$.
The massive galaxy cluster El Gordo (ACT-CL J0102--4915) is a rare merging system with a high collision speed suggested by multi-wavelength observations and the theoretical modeling. Zhang et al. (2015) propose two types of mergers, a nearly head-on
The observational features of the massive galaxy cluster El Gordo (ACT-CL J0102-4915), such as the X-ray emission, the Sunyaev-Zeldovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing h
Dark matter particles may decay, emitting photons. Drawing on the EAGLE family of hydrodynamic simulations of galaxy formation -- including the APOSTLE and C-EAGLE simulations -- we assess the systematic uncertainties and scatter on the decay flux fr
We have characterized a sample of extended X-ray sources in the A1367 galaxy cluster that lack optical counterparts. The sources are galaxy size and have an average total mass of $1.3times10^{11}$ solar masses. The average hot gas mass is $3.0times10
We report the discovery of a folded gravitationally lensed image, Hamiltons Object, found in a HST image of the field near the AGN SDSS J223010.47-081017.8 ($z=0.62$). The lensed images are sourced by a galaxy at a spectroscopic redshift of 0.8200$pm