ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating the galaxy cluster El Gordo: gas motion, kinetic Sunyaev-Zeldovich signal, and X-ray line features

154   0   0.0 ( 0 )
 نشر من قبل Congyao Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Congyao Zhang




اسأل ChatGPT حول البحث

The massive galaxy cluster El Gordo (ACT-CL J0102--4915) is a rare merging system with a high collision speed suggested by multi-wavelength observations and the theoretical modeling. Zhang et al. (2015) propose two types of mergers, a nearly head-on merger and an off-axis merger with a large impact parameter, to reproduce most of the observational features of the cluster, by using numerical simulations. The different merger configurations of the two models result in different gas motion in the simulated clusters. In this paper, we predict the kinetic Sunyaev-Zeldovich (kSZ) effect, the relativistic correction of the thermal Sunyaev-Zeldovich (tSZ) effect, and the X-ray spectrum of this cluster, based on the two proposed models. We find that (1) the amplitudes of the kSZ effect resulting from the two models are both on the order of $Delta T/Tsim10^{-5}$; but their morphologies are different, which trace the different line-of-sight velocity distributions of the systems; (2) the relativistic correction of the tSZ effect around $240 {rm,GHz}$ can be possibly used to constrain the temperature of the hot electrons heated by the shocks; and (3) the shift between the X-ray spectral lines emitted from different regions of the cluster can be significantly different in the two models. The shift and the line broadening can be up to $sim 25{rm,eV}$ and $50{rm,eV}$, respectively. We expect that future observations of the kSZ effect and the X-ray spectral lines (e.g., by ALMA, XARM) will provide a strong constraint on the gas motion and the merger configuration of ACT-CL J0102--4915.



قيم البحث

اقرأ أيضاً

81 - Congyao Zhang 2015
The observational features of the massive galaxy cluster El Gordo (ACT-CL J0102-4915), such as the X-ray emission, the Sunyaev-Zeldovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing h igh-speed collision of two galaxy clusters, similar to the well-known Bullet Cluster. We perform a series of hydrodynamical simulations to investigate the merging scenario and identify the initial conditions for the collision in ACT-CL J0102-4915. By surveying the parameter space of the various physical quantities that describe the two colliding clusters, including their total mass (M), mass ratio (xi), gas fractions (f_b), initial relative velocity (V), and impact parameter (P), we find out an off-axis merger with P~800h_{70}^{-1}kpc, V~2500km/s, M~3x10^{15}Msun, and xi=3.6 that can lead to most of the main observational features of ACT-CL J0102-4915. Those features include the morphology of the X-ray emission with a remarkable wake-like substructure trailing after the secondary cluster, the X-ray luminosity and the temperature distributions, and also the SZ temperature decrement. The initial relative velocity required for the merger is extremely high and rare compared to that inferred from currently available Lambda cold dark matter (LCDM) cosmological simulations, which raises a potential challenge to the LCDM model, in addition to the case of the Bullet Cluster.
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe ($z < 0.11$) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zeldovich (SZ) effect by the Planck satellite and t he second is an X-ray selected sample. In agreement to X-ray substructure estimates we found that the SZ systems have a larger fraction of substructure than the X-ray clusters. We have also found evidence that the higher mass regime of the SZ clusters, compared to the X-ray sample, explains the larger fraction of disturbed objects in the Planck data. Although we detect a redshift evolution in the substructure fraction, it is not sufficient to explain the different results between the higher-z SZ sample and the X-ray one. We have also verified a good agreement ($sim$60$%$) between the optical and X-ray substructure estimates. However, the best level of agreement is given by the substructure classification given by measures based on the brightest cluster galaxy (BCG), either the BCG$-$X-ray centroid offset, or the magnitude gap between the first and second BCGs. We advocate the use of those two parameters as the most reliable and cheap way to assess cluster dynamical state. We recommend an offset cut of $sim$0.01$times$R$_{500}$ to separate relaxed and disturbed clusters. Regarding the magnitude gap the separation can be done at $Delta m_{12} = 1.0$. The central galaxy paradigm (CGP) may not be valid for $sim$20$%$ of relaxed massive clusters. This fraction increases to $sim$60$%$ for disturbed systems.
The kinetic Sunyaev-Zeldovich (kSZ) effect is a secondary cosmic microwave background (CMB) anisotropy induced by the scattering of CMB photons off intervening electrons. Through cross-correlations with tracers of large-scale structure, the kSZ effec t can be used to reconstruct the 3-dimensional radial-velocity field, a technique known as kSZ tomography. We explore the cross-correlation between the CMB and line-intensity fluctuations to retrieve the late-time kSZ signal across a wide redshift range. We focus on the CII emission line, and predict the signal-to-noise ratio of the kSZ tomography signal between redshifts $z=1-5$ for upcoming experiments. We show that while instruments currently under construction may reach a low-significance detection of kSZ tomography, next-generation experiments will achieve greater sensitivity, with a detection significance of $mathcal{O}(10^2-10^3)$. Due to sample-variance cancellation, the cross-correlation between the reconstructed velocity field from kSZ tomography and intensity fluctuations can improve measurements of %the scale-dependent bias contributions from new physics to the power spectrum at large scales. To illustrate this improvement, we consider models of the early Universe that induce primordial local-type non-gaussianity and correlated compensated isocurvature perturbations. We show that with CMB-S4 and an AtLAST-like survey, the uncertainty on $f_{rm NL}$ and $A_{rm CIP}$ can be reduced by a factor of $sim 3$, achieving $sigma(f_{rm NL}) lesssim 1$. We further show that probing both low and high redshifts is crucial to break the degeneracy between the two parameters.
188 - J. M. F. Donnert 2013
Simulations of isolated binary mergers of galaxy clusters are a useful tool to study the evolution of these objects. For exceptionally massive systems they even represent the only viable way of simulation, because these are rare in typical cosmologic al simulations. We present a new practical model for these simulations based on the Hernquist dark matter profile. The hydrostatic equation is solved for a beta-model with $beta$ = 2/3 in this potential and approximate expressions for X-ray brightness and Compton-y parameter are derived. We show in detail how to setup such a system using SPH. The theoretical and several numerical models are compared to observed scaling relations of galaxy clusters and satisfactory agreement with the self-similar relations is found. The model is then applied to investigate the observed cluster ACT-CT J0102-4915 (El Gordo), a particularly massive merging high redshift cluster. We are able to reproduce the X-ray luminosity, SZ-effect and dark matter core distance as well as the rough shape of the observed cluster for reasonable model parameters. The lack of substruc- ture prevents us from obtaining the fluctuations observed in the wake of the system and we argue that the parent cluster of the system was highly disturbed even before the main merger observed today.
107 - N.G. Czakon , J. Sayers , A. Mantz 2014
We present scaling relations between the integrated Sunyaev-Zeldovich Effect (SZE) signal, $Y_{rm SZ}$, its X-ray analogue, $Y_{rm X}equiv M_{rm gas}T_{rm X}$, and total mass, $M_{rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) s ample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{rm X}$, and mass, $M_{rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with Chandra, and $M_{rm tot}$ is derived from $M_{rm gas}$ assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$--$Y_{rm X}$ scaling to have a power-law index of $0.84pm0.07$, and a fractional intrinsic scatter in $Y_{2500}$ of $(21pm7)%$ at fixed $Y_{rm X}$, both of which are consistent with previous analyses. We also measure the scaling between $Y_{2500}$ and $M_{2500}$, finding a power-law index of $1.06pm0.12$ and a fractional intrinsic scatter in $Y_{2500}$ at fixed mass of $(25pm9)%$. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5$sigma$. Given the good agreement between the measured $Y_{2500}$--$Y_{rm X}$ scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا