ﻻ يوجد ملخص باللغة العربية
We select a sample of 90 obscured (type2) AGN with 1.45<z<3.05 from the zCOSMOS-deep galaxy sample by 5 sigma-detection of the high-ionization CIV {lambda}1549 narrow emission line. The presence of this feature in a galaxy spectrum is often associated with nuclear activity, and the selection effectiveness has been also confirmed by ultraviolet (UV) emission line ratio diagnostic diagrams. Applying the same selection technique, a sample of 102 unobscured (type 1) AGN was collected. Taking advantage of the large amount of multi-band data available in the COSMOS field, we investigate the properties of the CIV-selected type 2 AGN, focusing on their host galaxies, X-ray emission and UV emission lines. Finally, we investigate the physical properties of the ionized gas in the Narrow Line Region (NLR) of this type 2 AGN sample, combining the analysis of strong UV emission lines with predictions from photo-ionization models. We find that, in order to successfully reproduce the relative intensity of UV emission lines of the selected high-z type 2 AGN, two new ingredients in the photo-ionization models are fundamental,i.e. small inner radii of the NLR (~90pc for LAGN = 10^45erg/s) and the internal dissipative micro-turbulence of the gas emitting clouds (with vmicr~100km/s). With these modified models, we compute the gas-phase metallicity of the NLR, and our measurements indicate a statistically significant evolution of the metal content with redshift. Finally, we do not observe, in our CIV-selected type 2 AGN sample, a strong relationship between the NLR gas metallicity and the stellar mass of the host galaxy.
A sample of 94 narrow line AGN with 0.65<z<1.20 has been selected from the 20k-Bright zCOSMOS galaxy sample by detection of the high-ionization [NeV]3426 line. Taking advantage of the large amount of data available in the COSMOS field, the properties
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically lumin
We study the physical and kinematic properties of the narrow line region (NLR) of the nearest obscured quasar MRK 477 (z=0.037), using optical and near-infrared spectroscopy. We explore a diversity of aspects that provide a more complete understandin
We derive the total cold gas, atomic hydrogen, and molecular gas masses of approximately 24 000 galaxies covering four decades in stellar mass at redshifts 0.5 < z < 3.0, taken from the CANDELS survey. Our inferences are based on the inversion of a m
The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) was designed to conduct a blind search for AGN-driven outflows on X-ray selected AGN at redshift z$sim$2 with high ($sim$2 kpc) spatial resolution, and correlate th