ترغب بنشر مسار تعليمي؟ اضغط هنا

The inferred evolution of the cold gas properties of CANDELS galaxies at 0.5 < z < 3.0

70   0   0.0 ( 0 )
 نشر من قبل Gerg\\\"o Popping
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the total cold gas, atomic hydrogen, and molecular gas masses of approximately 24 000 galaxies covering four decades in stellar mass at redshifts 0.5 < z < 3.0, taken from the CANDELS survey. Our inferences are based on the inversion of a molecular hydrogen based star formation law, coupled with a prescription to separate atomic and molecular gas. We find that: 1) there is an increasing trend between the inferred cold gas (HI and H2), HI, and H2 mass and the stellar mass of galaxies down to stellar masses of 10^8 Msun already in place at z = 3; 2) the molecular fractions of cold gas increase with increasing stellar mass and look-back time; 3) there is hardly any evolution in the mean HI content of galaxies at fixed stellar mass; 4) the cold gas fraction and relative amount of molecular hydrogen in galaxies decrease at a relatively constant rate with time, independent of stellar mass; 5) there is a large population of low-stellar mass galaxies dominated by atomic gas. These galaxies are very gas rich, but only a minor fraction of their gas is molecular; 6) the ratio between star-formation rate (SFR) and inferred total cold gas mass (HI + H2) of galaxies (i.e., star-formation efficiency; SFE) increases with star-formation at fixed stellar masses. Due to its simplicity, the presented approach is valuable to assess the impact of selection biases on small samples of directly-observed gas masses and to extend scaling relations down to stellar mass ranges and redshifts that are currently difficult to probe with direct measurements of gas content.



قيم البحث

اقرأ أيضاً

219 - Shi-Ying Lu 2019
Based on a large sample of massive ($M_{*}geq 10^{10} M_{odot}$) compact galaxies at $1.0 < z < 3.0$ in five 3D-HST/CANDELS fields, we quantify the fractional abundance and comoving number density of massive compact galaxies as a function of redshift . The samples of compact quiescent galaxies (cQGs) and compact star-forming galaxies (cSFGs) are constructed by various selection criteria of compact galaxies in literatures, and the effect of compactness definition on abundance estimate is proved to be remarkable, particularly for the cQGs and cSFGs at high redshifts. Regardless of the compactness criteria adopted, their overall redshift evolutions of fractional abundance and number density are found to be rather similar. Large samples of the cQGs exhibit a sustaining increase in number density from $z sim 3$ to 2 and a plateau at $1<z<2$. For massive cSFGs, a plateau in the number density at $2<z<3$ can be found, as well as a continuous drop from $z sim 2$ to 1. The evolutionary trends of the cQG and cSFG abundances support the scenario that the cSFGs at $z geq 2$ may have been rapidly quenched into quiescent phase via violent dissipational processes such as major merger and disk instabilities. Rarity of the cSFGs at lower redshifts ($z < 1$) can be interpreted by the decrease of gas reservoirs in dark matter halos and the consequent low efficiency of gas-rich dissipation.
We have measured the radial profiles of isophotal ellipticity ($varepsilon$) and disky/boxy parameter A$_4$ out to radii of about three times the semi-major axes for $sim4,600$ star-forming galaxies (SFGs) at intermediate redshifts $0.5<z<1.8$ in the CANDELS/GOODS-S and UDS fields. Based on the average size versus stellar-mass relation in each redshift bin, we divide our galaxies into Small SFGs (SSFGs), i.e., smaller than average for its mass, and Large SFGs (LSFGs), i.e., larger than average. We find that, at low masses ($M_{ast} < 10^{10}M_{odot}$), the SSFGs generally have nearly flat $varepsilon$ and A$_4$ profiles for both edge-on and face-on views, especially at redshifts $z>1$. Moreover, the median A$_4$ values at all radii are almost zero. In contrast, the highly-inclined, low-mass LSFGs in the same mass-redshift bins generally have monotonically increasing $varepsilon$ with radius and are dominated by disky values at intermediate radii. These findings at intermediate redshifts imply that low-mass SSFGs are not disk-like, while low-mass LSFGs appear to harbour disk-like components flattened by significant rotation. At high masses ($M_{ast} > 10^{10}M_{odot}$), highly-inclined SSFGs and LSFGs both exhibit a general, distinct trend for both $varepsilon$ and A$_4$ profiles: increasing values with radius at lower radii, reaching maxima at intermediate radii, and then decreasing values at larger radii. Such a trend is more prevalent for more massive ($M_{ast} > 10^{10.5}M_{odot}$) galaxies or those at lower redshifts ($z<1.4$). The distinct trend in $varepsilon$ and A$_4$ can be simply explained if galaxies possess all three components: central bulges, disks in the intermediate regions, and halo-like stellar components in the outskirts.
Post-starburst galaxies are typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molec ular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses of ~10$^9$ M$_{odot}$, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing ~90 per cent of its star-forming interstellar medium in only ~600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation, due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
144 - Ekta A. Shah 2020
Galaxy interactions and mergers are thought to play an important role in the evolution of galaxies. Studies in the nearby universe show a higher AGN fraction in interacting and merging galaxies than their isolated counterparts, indicating that such i nteractions are important contributors to black hole growth. To investigate the evolution of this role at higher redshifts, we have compiled the largest known sample of major spectroscopic galaxy pairs (2381 with $Delta V <5000$ km s$^{-1}$) at $0.5<z<3.0$ from observations in the COSMOS and CANDELS surveys. We identify X-ray and IR AGN among this kinematic pair sample, a visually identified sample of mergers and interactions, and a mass-, redshift-, and environment-matched control sample for each in order to calculate AGN fractions and the level of AGN enhancement as a function of relative velocity, redshift, and X-ray luminosity. While we see a slight increase in AGN fraction with decreasing projected separation, overall, we find no significant enhancement relative to the control sample at any separation. In the closest projected separation bin ($<25$ kpc, $Delta V <1000$ km s$^{-1}$), we find enhancements of a factor of 0.94$^{+0.21}_{-0.16}$ and 1.00$^{+0.58}_{-0.31}$ for X-ray and IR-selected AGN, respectively. While we conclude that galaxy interactions do not significantly enhance AGN activity on average over $0.5<z<3.0$ at these separations, given the errors and the small sample size at the closest projected separations, our results would be consistent with the presence of low-level AGN enhancement.
Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demo graphics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا