ﻻ يوجد ملخص باللغة العربية
A conjecture of Hirschowitzs predicts that a globally generated vector bundle $W$ on a compact complex manifold $A$ satisfies the formal principle, i.e., the formal neighborhood of its zero section determines the germ of neighborhoods in the underlying complex manifold of the vector bundle $W$. By applying Cartans equivalence method to a suitable differential system on the universal family of the Douady space of the complex manifold, we prove that this conjecture is true if $A$ is a Fano manifold, or if the global sections of $W$ separate points of $A$. Our method shows more generally that for any unobstructed compact submanifold $A$ in a complex manifold, if the normal bundle is globally generated and its sections separate points of $A$, then a sufficiently general deformation of $A$ satisfies the formal principle. In particular, a sufficiently general smooth free rational curve on a complex manifold satisfies the formal principle.
We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2
For every integer $g ,geq, 2$ we show the existence of a compact Riemann surface $Sigma$ of genus $g$ such that the rank two trivial holomorphic vector bundle ${mathcal O}^{oplus 2}_{Sigma}$ admits holomorphic connections with $text{SL}(2,{mathbb R})
The Quillen connection on ${mathcal L} rightarrow {mathcal M}_g$, where ${mathcal L}^*$ is the Hodge line bundle over the moduli stack of smooth complex projective curves curves ${mathcal M}_g$, $g geq 5$, is uniquely determined by the condition that
In this paper we propose the concept of formal desingularizations as a substitute for the resolution of algebraic varieties. Though a usual resolution of algebraic varieties provides more information on the structure of singularities there is evidenc
Once first answers in any dimension to the Green-Griffiths and Kobayashi conjectures for generic algebraic hypersurfaces $mathbb{X}^{n-1} subset mathbb{P}^n(mathbb{C})$ have been reached, the principal goal is to decrease (to improve) the degree boun