ﻻ يوجد ملخص باللغة العربية
We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves, and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendiecks Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation, and certain logarithmic foliations have stable tangent sheaves.
We show that codimension one distributions with at most isolated singularities on certain smooth projective threefolds with Picard rank one have stable tangent sheaves. The ideas in the proof of this fact are then applied to the characterization of c
This paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds threedimensional, with Picard number equal to one. We study the relations between alge
We study foliations by curves on the three-dimensional projective space with no isolated singularities, which is equivalent to assuming that the conormal sheaf is locally free. We provide a classification of such foliations by curves up to degree 3,
For every integer $g ,geq, 2$ we show the existence of a compact Riemann surface $Sigma$ of genus $g$ such that the rank two trivial holomorphic vector bundle ${mathcal O}^{oplus 2}_{Sigma}$ admits holomorphic connections with $text{SL}(2,{mathbb R})
The space of holomorphic foliations of codimension one and degree $dgeq 2$ in $mathbb{P}^n$ ($ngeq 3$) has an irreducible component whose general element can be written as a pullback $F^*mathcal{F}$, where $mathcal{F}$ is a general foliation of degre