ﻻ يوجد ملخص باللغة العربية
Deep Bayesian neural network has aroused a great attention in recent years since it combines the benefits of deep neural network and probability theory. Because of this, the network can make predictions and quantify the uncertainty of the predictions at the same time, which is important in many life-threatening areas. However, most of the recent researches are mainly focusing on making the Bayesian neural network easier to train, and proposing methods to estimate the uncertainty. I notice there are very few works that properly discuss the ways to measure the performance of the Bayesian neural network. Although accuracy and average uncertainty are commonly used for now, they are too general to provide any insight information about the model. In this paper, we would like to introduce more specific criteria and propose several metrics to measure the model performance from different perspectives, which include model calibration measurement, data rejection ability and uncertainty divergence for samples from the same and different distributions.
Bayesian neural networks (BNNs) augment deep networks with uncertainty quantification by Bayesian treatment of the network weights. However, such models face the challenge of Bayesian inference in a high-dimensional and usually over-parameterized spa
Bayesian Neural Networks (BNNs) place priors over the parameters in a neural network. Inference in BNNs, however, is difficult; all inference methods for BNNs are approximate. In this work, we empirically compare the quality of predictive uncertainty
In this paper, we consider the problem of assessing the adversarial robustness of deep neural network models under both Markov chain Monte Carlo (MCMC) and Bayesian Dark Knowledge (BDK) inference approximations. We characterize the robustness of each
In this paper, we present a general framework for distilling expectations with respect to the Bayesian posterior distribution of a deep neural network classifier, extending prior work on the Bayesian Dark Knowledge framework. The proposed framework t
Bayesian neural networks (BNNs) allow us to reason about uncertainty in a principled way. Stochastic Gradient Langevin Dynamics (SGLD) enables efficient BNN learning by drawing samples from the BNN posterior using mini-batches. However, SGLD and its