ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of interacting dark soliton stripes

71   0   0.0 ( 0 )
 نشر من قبل Ricardo Carretero
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work we examine the statics and dynamics of multiple parallel dark soliton stripes in a two-dimensional Bose-Einstein condensate. Our principal goal is to study the effect of the interaction between the stripes on the transverse instability of the individual stripes. We use a recently developed adiabatic invariant formulation to derive a quasi-analytical prediction for the stripe equilibrium position and for the Bogoliubov-de Gennes spectrum of excitations of stationary stripes. The cases of two-, three- and four-stripe states are studied in detail. We subsequently test our predictions against numerical simulations of the full two-dimensional Gross-Pitaevskii equation. We find that the number of unstable eigenmodes increases as the number of stripes increases due to (unstable) relative motions between the stripes. Their corresponding growth rates do not significantly change, although for large chemical potentials, the larger the stripe number, the larger the maximal instability growth rate. The instability induced dynamics of multiple stripe states and their decay into vortices are also investigated.



قيم البحث

اقرأ أيضاً

In the present work, we develop an adiabatic invariant approach for the evolution of quasi-one-dimensional (stripe) solitons embedded in a two-dimensional Bose-Einstein condensate. The results of the theory are obtained both for the one-component cas e of dark soliton stripes, as well as for the considerably more involved case of the two-component dark-bright (alias filled dark) soliton stripes. In both cases, analytical predictions regarding the stability and dynamics of these structures are obtained. One of our main findings is the determination of the instability modes of the waves as a function of the parameters of the system (such as the trap strength and the chemical potential). Our analytical predictions are favorably compared with results of direct numerical simulations.
In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component atomic Bose-Einstein condensates (BECs). The stationary states stem from the associated linear limits (as the eigenfunctions of the quantum harmonic oscillator problem) and are parametrically continued to the nonlinear regimes by varying the respective chemical potentials, i.e., from the low-density linear limits to the high-density Thomas-Fermi regimes. We perform a Bogolyubov-de Gennes (BdG) spectral stability analysis to identify stable parametric regimes of these states. Upon SO(2)-rotation, the stable steady-states, one-, two-, three-, four-, and many dark-dark soliton breathing patterns are observed in the numerical simulations. Furthermore, analytic solutions up to three dark-bright solitons in the homogeneous setting, and three-component systems are also investigated.
Matter-wave interference mechanisms in one-dimensional Bose-Einstein condensates that allow for the controlled generation of dark soliton trains upon choosing suitable box-type initial configurations are described. First, the direct scattering proble m for the defocusing nonlinear Schrodinger equation with nonzero boundary conditions and general box-type initial configurations is discussed, and expressions for the discrete spectrum corresponding to the dark soliton excitations generated by the dynamics are obtained. It is found that the size of the initial box directly affects the number, size and velocity of the solitons, while the initial phase determines the parity of the solutions. The analytical results are compared to those of numerical simulations of the Gross-Pitaevskii equation, both in the absence and in the presence of a harmonic trap. The numerical results bear out the analytical results with excellent agreement.
We consider the dynamics of dark matter solitons moving through non-uniform cigar-shaped Bose-Einstein condensates described by the mean field Gross-Pitaevskii equation with generalized nonlinearities, in the case when the condition for the modulatio n stability of the Bose-Einstein condensate is fulfilled. The analytical expression for the frequency of the oscillations of a deep dark soliton is derived for nonlinearities which are arbitrary functions of the density, while specific results are discussed for the physically relevant case of a cubic-quintic nonlinearity modeling two- and three-body interactions, respectively. In contrast to the cubic Gross-Pitaevskii equation for which the frequencies of the oscillations are known to be independent of background density and interaction strengths, we find that in the presence of a cubic-quintic nonlinearity an explicit dependence of the oscillations frequency on the above quantities appears. This dependence gives rise to the possibility of measuring these quantities directly from the dark soliton dynamics, or to manage the oscillation via the changes of the scattering lengths by means of Feshbach resonance. A comparison between analytical results and direct numerical simulations of the cubic-quintic Gross-Pitaevskii equation shows good agreement which confirms the validity of our approach.
78 - Wenlong Wang 2021
A vortex-bright soliton can precess around a fix point. Here, we find numerically that the fixed point and the associated precessional orbits can be shifted by applying a constant driving force on the bright component, the displacement is proportiona l to the force with a minus sign. This robust dynamics is then discussed theoretically by treating the vortex-bright soliton as an effective point particle, explaining the observed dynamics and predicting new ones that are subsequently confirmed. By appropriately tuning the force, the vortex-bright soliton can be guided following an arbitrary trajectory, including that it can be pinned and released at will. This finding opens a highly flexible and controllable approach of engineering the dynamics of vortical structures in Bose-Einstein condensates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا