ترغب بنشر مسار تعليمي؟ اضغط هنا

Engaging Citizen Scientists to Keep Transit Times Fresh and Ensure the Efficient Use of Transiting Exoplanet Characterization Missions

75   0   0.0 ( 0 )
 نشر من قبل Robert Zellem
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This white paper advocates for the creation of a community-wide program to maintain precise mid-transit times of exoplanets that would likely be targeted by future platforms. Given the sheer number of targets that will require careful monitoring between now and the launch of the next generation of exoplanet characterization missions, this network will initially be devised as a citizen science project -- focused on the numerous amateur astronomers, small universities and community colleges and high schools that have access to modest sized telescopes and off-the-shelf CCDs.



قيم البحث

اقرأ أيضاً

Due to the efforts by numerous ground-based surveys and NASAs Kepler and TESS, there will be hundreds, if not thousands, of transiting exoplanets ideal for atmospheric characterization via spectroscopy with large platforms such as JWST and ARIEL. How ever their next predicted mid-transit time could become so increasingly uncertain over time that significant overhead would be required to ensure the detection of the entire transit. As a result, follow-up observations to characterize these exoplanetary atmospheres would require less-efficient use of an observatorys time---which is an issue for large platforms where minimizing observing overheads is a necessity. Here we demonstrate the power of citizen scientists operating smaller observatories ($le$1-m) to keep ephemerides fresh, defined here as when the 1$sigma$ uncertainty in the mid-transit time is less than half the transit duration. We advocate for the creation of a community-wide effort to perform ephemeris maintenance on transiting exoplanets by citizen scientists. Such observations can be conducted with even a 6-inch telescope, which has the potential to save up to $sim$10,000~days for a 1000-planet survey. Based on a preliminary analysis of 14 transits from a single 6-inch MicroObservatory telescope, we empirically estimate the ability of small telescopes to benefit the community. Observations with a small-telescope network operated by citizen scientists are capable of resolving stellar blends to within 5/pixel, can follow-up long period transits in short-baseline TESS fields, monitor epoch-to-epoch stellar variability at a precision 0.67%$pm$0.12% for a 11.3 V-mag star, and search for new planets or constrain the masses of known planets with transit timing variations greater than two minutes.
We present scope (Simulated CCD Observations for Photometric Experimentation), a Python package to create a forward model of telescope detectors and simulate stellar targets with motion relative to the CCD. The primary application of this package is the simulation of the Kepler Space Telescope detector to predict and characterize increased instrumental noise in the spacecrafts final campaigns of observation. As the fuel powering the spacecrafts stabilizing thrusters ran out and thruster fires began to sputter and fail, stellar Point Spread Functions (PSFs) experienced more extreme and less predictable motion relative to regions of varied sensitivity on the spacecraft detector, generating more noise in transiting exoplanet light curves. Using our simulations, we demonstrate that current de-trending techniques effectively capture and remove systematics caused by sensitivity variation for spacecraft motion as high as about ten times that typically experienced by K2. The scope package is open-source and has been generalized to allow custom detector and stellar target parameters. Future applications include simulating observations made by the Transiting Exoplanet Survey Satellite (TESS) and ground based observations with synthetic atmospheric interference as testbeds for noise-removal techniques.
We provide 28 new planet candidates that have been vetted by citizen scientists and expert astronomers. This catalog contains 9 likely rocky candidates ($R_{pl} < 2.0R_oplus$) and 19 gaseous candidates ($R_{pl} > 2.0R_oplus$). Within this list we fin d one multi-planet system (EPIC 246042088). These two sub-Neptune ($2.99 pm 0.02R_oplus$ and $3.44 pm 0.02R_oplus$) planets exist in a near 3:2 orbital resonance. The discovery of this multi-planet system is important in its addition to the list of known multi-planet systems within the K2 catalog, and more broadly in understanding the multiplicity distribution of the exoplanet population (Zink et al. 2019). The candidates on this list are anticipated to generate RV amplitudes of 0.2-18 m/s, many within the range accessible to current facilities.
Instrumentation techniques in the field of direct imaging of exoplanets have greatly advanced over the last two decades. Two of the four NASA-commissioned large concept studies involve a high-contrast instrument for the imaging and spectral character ization of exo-Earths from space: LUVOIR and HabEx. This whitepaper describes the status of 8 optical testbeds in the US and France currently in operation to experimentally validate the necessary technologies to image exo-Earths from space. They explore two complementary axes of research: (i) coronagraph designs and manufacturing and (ii) active wavefront correction methods and technologies. Several instrument architectures are currently being analyzed in parallel to provide more degrees of freedom for designing the future coronagraphic instruments. The necessary level of performance has already been demonstrated in-laboratory for clear off-axis telescopes (HabEx-like) and important efforts are currently in development to reproduce this accomplishment on segmented and/or on-axis telescopes (LUVOIR-like) over the next two years.
Laboratory studies for planetary science and astrobiology aimat advancing our understanding of the Solar System through the promotion of theoretical and experimental research into the underlying processes that shape it. Laboratory studies (experiment al and theoretical) are crucial to interpret observations and mission data, and are key incubators for new mission concepts as well as instrument development and calibration. They also play a vital role in determining habitability of Solar System bodies, enhancing our understanding of the origin of life, and in the search for signs of life beyond Earth, all critical elements of astrobiology. Here we present an overview of the planetary science areas where laboratory studies are critically needed, in particular in the next decade. These areas include planetary & satellites atmospheres, surfaces, and interiors, primitive bodies such as asteroids, meteorites, comets, and trans-Neptunian objects, and signs of life. Generating targeted experimental and theoretical laboratory data that are relevant for a better understanding of the physical, chemical, and biological processes occurring in these environments is crucial. For each area we present i) a brief overview of the state-of-the-art laboratory work, ii) the challenges to analyze and interpret data sets from missions and ground-based observations and to support mission and concept development, and iii) recommendations for high priority laboratory studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا