ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Laboratory Studies to Advance Planetary Science and Support Missions

63   0   0.0 ( 0 )
 نشر من قبل Farid Salama
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laboratory studies for planetary science and astrobiology aimat advancing our understanding of the Solar System through the promotion of theoretical and experimental research into the underlying processes that shape it. Laboratory studies (experimental and theoretical) are crucial to interpret observations and mission data, and are key incubators for new mission concepts as well as instrument development and calibration. They also play a vital role in determining habitability of Solar System bodies, enhancing our understanding of the origin of life, and in the search for signs of life beyond Earth, all critical elements of astrobiology. Here we present an overview of the planetary science areas where laboratory studies are critically needed, in particular in the next decade. These areas include planetary & satellites atmospheres, surfaces, and interiors, primitive bodies such as asteroids, meteorites, comets, and trans-Neptunian objects, and signs of life. Generating targeted experimental and theoretical laboratory data that are relevant for a better understanding of the physical, chemical, and biological processes occurring in these environments is crucial. For each area we present i) a brief overview of the state-of-the-art laboratory work, ii) the challenges to analyze and interpret data sets from missions and ground-based observations and to support mission and concept development, and iii) recommendations for high priority laboratory studies.



قيم البحث

اقرأ أيضاً

The WGLA of the AAS (http://www.aas.org/labastro/) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next gene ration planetary science missions are carefully evaluated and recommended in this white paper submitted by the WGLA to Planetary Decadal Survey.
In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to prov ide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators.
We now know that the outer solar system is host to at least six diverse planetary ring systems, each of which is a scientifically compelling target with the potential to inform us about the evolution, history and even the internal structure of the bo dy it adorns. These diverse ring systems represent a set of distinct local laboratories for understanding the physics and dynamics of planetary disks, with applications reaching beyond our Solar System. We highlight the current status of planetary rings science and the open questions before the community to promote continued Earth-based and spacecraft-based investigations into planetary rings. As future spacecraft missions are launched and more powerful telescopes come online in the decades to come, we urge NASA for continued support of investigations that advance our understanding of planetary rings, through research and analysis of data from existing facilities, more laboratory work and specific attention to strong rings science goals during future mission selections.
The field of exoplanetary science has emerged over the past two decades, rising up alongside traditional solar system planetary science. Both fields focus on understanding the processes which form and sculpt planets through time, yet there has been l ess scientific exchange between the two communities than is ideal. This white paper explores some of the institutional and cultural barriers which impede cross-discipline collaborations and suggests solutions that would foster greater collaboration. Some solutions require structural or policy changes within NASA itself, while others are directed towards other institutions, including academic publishers, that can also facilitate greater interdisciplinarity.
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESAs Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا