ﻻ يوجد ملخص باللغة العربية
Almost all massive stars have bound stellar companions, existing in binaries or higher-order multiples. While binarity is theorized to be an essential feature of how massive stars form, essentially all information about such properties is derived from observations of already formed stars, whose orbital properties may have evolved since birth. Little is known about binarity during formation stages. Here we report high angular resolution observations of 1.3 mm continuum and H30alpha recombination line emission, which reveal a massive protobinary with apparent separation of 180 au at the center of the massive star-forming region IRAS07299-1651. From the line-of-sight velocity difference of 9.5 km/s of the two protostars, the binary is estimated to have a minimum total mass of 18 solar masses, consistent with several other metrics, and maximum period of 570 years, assuming a circular orbit. The H30alpha line from the primary protostar shows kinematics consistent with rotation along a ring of radius of 12 au. The observations indicate that disk fragmentation at several hundred au may have formed the binary, and much smaller disks are feeding the individual protostars.
We study the formation of massive Population III binary stars using a newly developed radiation hydrodynamics code with the adaptive mesh refinement and adaptive ray-tracing methods. We follow the evolution of a typical primordial star-forming cloud
Populations of massive stars are directly reflective of the physics of stellar evolution. Counting subtypes of massive stars and ratios of massive stars in different evolutionary states have been used ubiquitously as diagnostics of age and metallicit
We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300Msun, making it a candidate for the m
The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence
Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. We a