ترغب بنشر مسار تعليمي؟ اضغط هنا

Substellar Multiplicity Throughout the Ages

83   0   0.0 ( 0 )
 نشر من قبل Daniella Bardalez Gagliuffi PhD
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Substellar multiplicity is a key outcome of the formation process. The biggest challenge for the next decade will be to distinguish between the formation history, environmental conditions, and dynamical evolution leading to the least massive brown dwarfs and the most massive planets at the tail ends of their mass functions. In this white paper, we advocate for a comprehensive characterization of both the statistical distributions of the population of ultracool dwarf multiple systems and the fundamental properties of their individual components as a function of age. A space-based precision astrometry mission in near-infrared wavelengths would provide the necessary measurements to identify and characterize age-calibrated populations of multiple systems.



قيم البحث

اقرأ أيضاً

158 - G. Duchene 2013
We present the first high-angular resolution survey for multiple systems among very low-mass stars and brown dwarfs in the Hyades open cluster. Using the Keck,II adaptive optics system, we observed a complete sample of 16 objects with estimated masse s $lesssim$0.1 Msun. We have identified three close binaries with projected separation $lesssim$0.11, or $lesssim$5 AU. A number of wide, mostly faint candidate companions are also detected in our images, most of which are revealed as unrelated background sources based on astrometric and/or photometric considerations. The derived multiplicity frequency, 19+13/-6 % over the 2-350 AU range, and the rarity of systems wider than 10 AU are both consistent with observations of field very low-mass objects. In the limited 3-50 AU separation range, the companion frequency is essentially constant from brown dwarfs to solar-type stars in the Hyades cluster, which is also in line with our current knowledge for field stars. Combining the binaries discovered in this surveys with those already known in the Pleiades cluster reveals that very low-mass binaries in open clusters, as well as in star-forming regions, are skewed toward lower mass ratios ($0.6 lesssim q lesssim 0.8$) than are their field counterparts, a result that cannot be accounted for by selection effects. Although the possibility of severe systematic errors in model-based mass estimates for very low-mass stars cannot be completely excluded, it is unlikely to explain this difference. We speculate that this trend indicates that surveys among very low-mass field stars may have missed a substantial population of intermediate mass ratio systems, implying that these systems are more common and more diverse than previously thought.
414 - Aleks Scholz 2013
The abundance of brown dwarfs (BDs) in young clusters is a diagnostic of star formation theory. Here we revisit the issue of determining the substellar initial mass function (IMF), based on a comparison between NGC1333 and IC348, two clusters in the Perseus star-forming region. We derive their mass distributions for a range of model isochrones, varying distances, extinction laws and ages, with comprehensive assessments of the uncertainties. We find that the choice of isochrone and other parameters have significant effects on the results, thus we caution against comparing IMFs obtained using different approaches. For NGC1333, we find that the star/BD ratio R is between 1.9 and 2.4, for all plausible scenarios, consistent with our previous work. For IC348, R is between 2.9 and 4.0, suggesting that previous studies have overestimated this value. Thus, the star forming process generates about 2.5-5 substellar objects per 10 stars. The derived star/BD ratios correspond to a slope of the power-law mass function of alpha=0.7-1.0 for the 0.03-1.0Msol mass range. The median mass in these clusters - the typical stellar mass - is between 0.13-0.30Msol. Assuming that NGC1333 is at a shorter distance than IC348, we find a significant difference in the cumulative distribution of masses between the two clusters, resulting from an overabundance of very low mass objects in NGC1333. Gaia astrometry will constrain the cluster distances better and will lead to a more definitive conclusion. Furthermore, ratio R is somewhat larger in IC348 compared with NGC1333, although this difference is still within the margins of error. Our results indicate that environments with higher object density may produce a larger fraction of very low mass objects, in line with predictions for brown dwarf formation through gravitational fragmentation of filaments falling into a cluster potential.
Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a far more reaching grasp on the substellar formation pro cess we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values are derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tendency is to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host stars metallicity is found for systems with low mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2 M$_{rm Jup}$. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.
We report unusual near- and mid-infrared photometric properties of G 196-3 B, the young substellar companion at 16 arcsec from the active M2.5-type star G 196-3 A, using data taken with the IRAC and MIPS instruments onboard Spitzer. G 196-3 B shows m arkedly redder colors at all wavelengths from 1.6 up to 24 micron than expected for its spectral type, which is determined at L3 from optical and near-infrared spectra. We discuss various physical scenarios to account for its reddish nature, and conclude that a low-gravity atmosphere with enshrouded upper atmospheric layers and/or a warm dusty disk/envelope provides the most likely explanations, the two of them consistent with an age in the interval 20-300 Myr. We also present new and accurate separate proper motion measurements for G 196-3 A and B confirming that both objects are gravitationally linked and share the same motion within a few mas/yr. After integration of the combined spectrophotometric spectral energy distributions, we obtain that the difference in the bolometric magnitudes of G 196-3 A and B is 6.15 +/- 0.10 mag. Kinematic consideration of the Galactic space motions of the system for distances in the interval 15-30 pc suggests that the pair is a likely member of the Local Association, and that it lay near the past positions of young star clusters like alpha Persei less than 85 Myr ago, where the binary might have originated. At these young ages, the mass of G 196-3 B would be in the range 12-25 Mjup, close to the frontier between planets and brown dwarfs.
Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains a challenge. The presence of very thick clouds has been suggested because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data wit h a radius compatible with evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provides a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperature from ~2000 K down to ~1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constrains in the mid-infrared, helping to confirm/refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence/absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا