ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting substellar and stellar formation. The role of the host stars metallicity

108   0   0.0 ( 0 )
 نشر من قبل Jesus Maldonado
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a far more reaching grasp on the substellar formation process we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values are derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tendency is to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host stars metallicity is found for systems with low mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2 M$_{rm Jup}$. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.



قيم البحث

اقرأ أيضاً

In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically fit for a single star, but we know that up to half of all exoplanet host stars may have one or more companion stars. We use high-resolution spectra of planet host stars in the Kepler field from the California-Kepler Survey to create simulated binaries; we select 8 stellar pairs and vary the contribution of the secondary star, then determine stellar parameters with SpecMatch-Emp and compare them to the parameters derived for the primary star alone. We find that in most cases the effective temperature, surface gravity, metallicity, and stellar radius derived from the composite spectrum are within 2-3 $sigma$ of the values determined from the unblended spectrum, but the deviations depend on the properties of the two stars. Relatively bright companion stars that are similar to the primary star have the largest effect on the derived parameters; in these cases the stellar radii can be overestimated by up to 60%. We find that metallicities are generally underestimated, with values up to 8 times smaller than the typical uncertainty in [Fe/H]. Our study shows that follow-up observations are necessary to detect or set limits on stellar companions of planetary host stars so that stellar (and planet) parameters are as accurate as possible.
331 - S. Geier , U. Heber , A. Tillich 2010
We give a brief review over the observational evidence for close substellar companions to hot subdwarf stars. The formation of these core helium-burning objects requires huge mass loss of their red giant progenitors. It has been suggested that beside s stellar companions substellar objects in close orbits may be able to trigger this mass loss. Such objects can be easily detected around hot subdwarf stars by medium or high resolution spectroscopy with an RV accuracy at the km/s-level. Eclipsing systems of HW Vir type stick out of transit surveys because of their characteristic light curves. The best evidence that substellar objects in close orbits around sdBs exist and that they are able to trigger the required mass loss is provided by the eclipsing system SDSS J0820+0008, which was found in the course of the MUCHFUSS project. Furthermore, several candidate systems have been discovered.
179 - N.-E. N`emec 2020
Comparing solar and stellar brightness variations is hampered by the difference in spectral passbands used in observations as well as by the possible difference in the inclination of their rotation axes from the line of sight. We calculate the rotati onal variability of the Sun as it would be measured in passbands used for stellar observations. In particular, we consider the filter systems used by the CoRoT, $Kepler$, TESS, and $Gaia$ space missions. We also quantify the effect of the inclination of the rotation axis on the solar rotational variability. We employ the Spectral And Total Irradiance REconstructions (SATIRE) model to calculate solar brightness variations in different filter systems as observed from the ecliptic plane. We then combine the simulations of the surface distribution of the magnetic features at different inclinations using a surface flux transport model (SFTM) with the SATIRE calculations to compute the dependence of the variability on the inclination. For an ecliptic-bound observer, the amplitude of the solar rotational variability, as observed in the total solar irradiance (TSI) is 0.68 mmag (averaged over solar cycles 21-24). We obtained corresponding amplitudes in the $Kepler$ (0.74 mmag), CoRoT (0.73 mmag), TESS (0.62 mmag), $Gaia~ $ (0.74 mmag), $Gaia~ G_{RP}$ (0.62 mmag), and ), $Gaia~ G_{BP}$ (0.86 mmag) passbands. Decreasing the inclination of the rotation axis decreases the rotational variability. For a sample of randomly inclined stars, the variability is on average 15% lower in all filter systems considered in this work. This almost compensates for the difference in the amplitudes of the variability in TSI and $Kepler$ passbands, making the amplitudes derived from the TSI records an ideal representation of the solar rotational variability for comparison to $Kepler$ stars with unknown inclinations.
The Ariel mission will characterise the chemical and thermal properties of the atmospheres of about a thousand exoplanets transiting their host star(s). The observation of such a large sample of planets will allow to deepen our understanding of plane tary and atmospheric formation at the early stages, providing a truly representative picture of the chemical nature of exoplanets, and relating this directly to the type and chemical environment of the host star. Hence, the accurate and precise determination of the host star fundamental properties is essential to Ariel for drawing a comprehensive picture of the underlying essence of these planetary systems. We present here a structured approach for the characterisation of Ariel stars that accounts for the concepts of homogeneity and coherence among a large set of stellar parameters. We present here the studies and benchmark analyses we have been performing to determine robust stellar fundamental parameters, elemental abundances, activity indices, and stellar ages. In particular, we present results for the homogeneous estimation of the activity indices S and log(RHK), and preliminary results for elemental abundances of Na, Al, Mg, Si, C, N. In addition, we analyse the variation of a planetary spectrum, obtained with Ariel, as a function of the uncertainty on the stellar effective temperature. Finally, we present our observational campaign for precisely and homogeneously characterising all Ariel stars in order to perform a meaningful choice of final targets before the mission launch.
We study rapidly accreting, gravitationally unstable disks with a series of global, three dimensional, numerical experiments using the code ORION. In this paper we conduct a numerical parameter study focused on protostellar disks, and show that one c an predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the disks accretion rate to its sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate, and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا