ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Control via Multi-Species Effects in PW-Class Laser-Ion Acceleration

248   0   0.0 ( 0 )
 نشر من قبل Axel Huebl
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser-ion acceleration with ultra-short pulse, PW-class lasers is dominated by non-thermal, intra-pulse plasma dynamics. The presence of multiple ion species or multiple charge states in targets leads to characteristic modulations and even mono-energetic features, depending on the choice of target material. As spectral signatures of generated ion beams are frequently used to characterize underlying acceleration mechanisms, thermal, multi-fluid descriptions require a revision for predictive capabilities and control in next-generation particle beam sources. We present an analytical model with explicit inter-species interactions, supported by extensive ab initio simulations. This enables us to derive important ensemble properties from the spectral distribution resulting from those multi-species effects for arbitrary mixtures. We further propose a potential experimental implementation with a novel cryogenic target, delivering jets with variable mixtures of hydrogen and deuterium. Free from contaminants and without strong influence of hardly controllable processes such as ionization dynamics, this would allow a systematic realization of our predictions for the multi-species effect.



قيم البحث

اقرأ أيضاً

We report on experimental investigations of proton acceleration from solid foils irradiated with PW-class laser-pulses, where highest proton cut-off energies were achieved for temporal pulse parameters that varied significantly from those of an ideal ly Fourier transform limited (FTL) pulse. Controlled spectral phase modulation of the driver laser by means of an acousto-optic programmable dispersive filter enabled us to manipulate the temporal shape of the last picoseconds around the main pulse and to study the effect on proton acceleration from thin foil targets. The results show that applying positive third order dispersion values to short pulses is favourable for proton acceleration and can lead to maximum energies of 70 MeV in target normal direction at 18 J laser energy for thin plastic foils, significantly enhancing the maximum energy compared to ideally compressed FTL pulses. The paper further proves the robustness and applicability of this enhancement effect for the use of different target materials and thicknesses as well as laser energy and temporal intensity contrast settings. We demonstrate that application relevant proton beam quality was reliably achieved over many months of operation with appropriate control of spectral phase and temporal contrast conditions using a state-of-the-art high-repetition rate PW laser system.
446 - H. C. Wang , S. M. Weng , M. Liu 2018
The ion beam bunching in a cascaded target normal sheath acceleration is investigated by theoretical analysis and particle-in-cell simulations. It is found that a proton beam can be accelerated and bunched simultaneously by injecting it into the risi ng sheath field at the rear side of a laser-irradiated foil target. In the rising sheath field, the ion phase rotation may take place since the back-end protons of the beam feels a stronger field than the front-end protons. Consequently, the injected proton beam can be compressed in the longitudinal direction. At last, the vital role of the ion beam bunching is illustrated by the integrated simulations of two successive stages in a cascaded acceleration.
Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported on in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For PW-class lasers, this acceleration regime provides favorable scaling of maximum ion energy with laser power for optimized interaction parameters. The mega Tesla-level magnetic fields generated by the laser-driven co-axial plasma structure in the target are prerequisite for accelerating protons to the energy of several hundred MeV.
127 - T. Nakamura , Y. Fukuda , A. Yogo 2008
Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are acce lerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets are presented.
82 - M. Liu , S. M. Weng , H. C. Wang 2018
We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by the radiation pressure acceleration i n the intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with a decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed, and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا