ﻻ يوجد ملخص باللغة العربية
Quantum computation using continuous-time evolution under a natural hardware Hamiltonian is a promising near- and mid-term direction toward powerful quantum computing hardware. We investigate the performance of continuous-time quantum walks as a tool for finding spin glass ground states, a problem that serves as a useful model for realistic optimization problems. By performing detailed numerics, we uncover significant ways in which solving spin glass problems differs from applying quantum walks to the search problem. Importantly, unlike for the search problem, parameters such as the hopping rate of the quantum walk do not need to be set precisely for the spin glass ground state problem. Heuristic values of the hopping rate determined from the energy scales in the problem Hamiltonian are sufficient for obtaining a better than square-root scaling. This makes it practical to use quantum walks for solving such problems, and opens the door for a range of applications on suitable quantum hardware.
We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid gr
We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: $S=1$ oxide Lu$_2$Mo$_2$O$_7$ and $S={frac{1}{2}}$ oxynitride Lu$_2$Mo$_2$O$_5$N$_2$. Lu$_2$Mo$_2$O$_7$ undergoes a transition
Cat states are coherent quantum superpositions of macroscopically distinct states and are useful for understanding the boundary between the classical and the quantum world. Due to their macroscopic nature, cat states are difficult to prepare in physi
We study the quantum walks of two interacting spin-1 bosons. We derive an exact solution for the time-dependent wave function that describes the two-particle dynamics governed by the one-dimensional spin-1 Bose-Hubbard model. We show that propagation
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develo