ﻻ يوجد ملخص باللغة العربية
A fluid is said to be emph{scale-invariant} when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a classical field obeying the Gross--Pitaevskii equation, and thus possesses a dynamical symmetry described by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies and interaction parameters by a scaling transform. Finally we show that some specific initial shapes - uniformly-filled triangles or disks - may lead to a periodic evolution, corresponding to a novel type of breather for the two-dimensional Gross--Pitaevskii equation.
In weakly nonlinear dispersive systems, solitons are spatially localized solutions which propagate without changing shape through a delicate balance between dispersion and self-focusing nonlinear effects. These states have been extensively studied in
We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase tra
In superfluid systems several sound modes can be excited, as for example first and second sound in liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in bot
In condensed matter physics, transport measurements are essential not only for the characterization of materials, but also to discern between quantum phases and identify new ones. The extension of these measurements into atomic quantum gases is emerg